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The answer is: No! No feedback control loop turns a Markovian process into a non-

Markovian one. The goal of this lecture will be to understand why that is the case. To

do so, we need to talk about classical stochastic processes, and in particular the meaning

of the Kolmogorov consistency condition. We will see that it is necessary to overcome this

condition to understand feedback control. This leads to the much richer framework of causal

models, which are able to distinguish between correlation and causation (which a classical

stochastic process cannot). Interestingly, an understanding of classical causal models brings

us very close to an understanding of a quantum stochastic process, describing the most

general quantum dynamics respecting causality. The second part of the lecture is then

devoted to providing an explicit theoretical framework for quantum stochastic processes and

to introduce a meaningful operational Markov condition, which shows that feedback control

does not change the Markovianity of the process.
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Main literature suggestions.

• Almost everything I am going to say is covered in Chapter 1 and Appendix A and B of

Ref. [1], which can be downloaded for free from here.

• Another classic reference on classical causal models is the book by Judea Pearl [2].

• A recent tutorial on (mostly) quantum stochastic processes and causal models was written

by Milz and Modi [3].

I. INTRODUCTION

It is a widespread habit to call ‘time-local’ differential equations of the form

ẋ(t) = R(t)x(t) (1)

Markovian, whereas differential equations with a ‘memory kernel’,

ẋ(t) =

∫ t

0
dsK(t− s)x(s), (2)

are called non-Markovian. That things are not that simple is easily recognized by assuming that

the Green’s function or propagator G of the dynamics, defined as x(t) = G(t)x(0), is invertible. In

that case we can immediately convert Eq. (2) into Eq. (1) by writing

ẋ(t) =

∫ t

0
dsK(t− s)G(s)x(0) =

∫ t

0
dsK(t− s)G(s)G(t)−1x(t) ≡ R(t)x(t), (3)

so is the dynamics Markovian or non-Markovian now?

Within this collaborative research center SFB 910 much attention is devoted to understanding

time-delayed feedback, which is used to turn some dynamical system with equation ẋ(t) = Rx(t)

into a dynamical system of the form ẋ(t) = Rx(t) + Fx(t − τ) (F = feedback force, τ = delay

parameter). Again, it is tempting to call the latter dynamics non-Markovian. However, the main

message of this lecture will be to explain why no feedback control law can change Markovian

dynamics into non-Markovian dynamics. Thus, if the original system ẋ(t) = Rx(t) is Markovian,

so is the situation described by ẋ(t) = Rx(t) + Fx(t− τ).

Why should this be true? Intuitively, we like to picture a dynamics as Markovian if the environ-

ment to which the system x(t) is coupled is memoryless. Thus, (non-)Markovianity is a property

of the environment! But any feedback control law acts on the system and thus, it cannot change

https://philipp-strasbergs-homepage.mozello.com/the-book-1/
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the nature of the environment. A memoryless environment remains memoryless independent of

what ‘we’ (or the external agent) decide to do with the system.1

II. CLASSICAL STOCHASTIC PROCESSES

To make our intuition above rigorous and to provide a general definition of Markovianity, we

first review some basics about stochastic processes, which we want to overcome later on. We

do not attempt any high-level mathematical definition of a stochastic process here. Instead, we

simply imagine some system of interest that we observe at an arbitrary set of discrete times

tn > · · · > t1 > t0. This system is described by some set of states x ∈ X, which we assume

to be finite for simplicity. Examples: “heads” and “tails” of a coin, the discretized position of a

Brownian particle, the number of photons in a cavity, the fraction of people paying attention to

this lecture, etc. If xk denotes the state of the system at time tk, then

p(xn, tn; . . . ;x1, t1;x0, t0) (4)

denotes the probability to find the system in state x0 at time t0, then in state x1 at time t1, and so

on and so forth until we find it in state xn at time tn. Importantly, a probabilistic description is in

general necessary because the state xk at time tk does not uniquely determine the states at earlier

or later times owing to the presence of an external and uncontrollable “environment”. Examples:

the surrounding water molecules in case of the Brownian particle, the (unknown) distribution of

how much sleep the audience got in the night prior to this lecture, etc.

Notation. Since the index on x is in one-to-one correspondence with the index on t, I will also

write Eq. (4) as p(xn, . . . , x1, x0). In fact, to save even further space I introduce the sequence

xn = (xn, . . . , x1, x0) of measurement results and also write p(xn).

Importantly, the (n+1)-time joint probability distribution (4) can be reconstructed experimen-

tally from a high-dimensional histogram by repeating the experiment many (in fact, very many for

1 One might argue that there are situations where one

also applies feedback control to parts of the environ-

ment, thereby potentially changing its properties. The

answer to that objection is that one then better labels

this part of the environment as part of the system too.

That is, we adapt the convention that the environment

is by definition the part of the world that we cannot

control.
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large n) times. Obviously, to be a valid probability distribution, Eq. (4) has to satisfy

p(xn) ≥ 0 ∀xn and
∑
xn

p(xn) = 1. (5)

However, there is another important property that Eq. (4) has to satify known as the Kolmogorov

consistency condition (KCC). To explain it, imagine we repeat the same experiment again and

measure the system at the same times except at time tk with k ∈ {0, 1, . . . , n}. Let us denote the

resulting n-time joint probability distribution by p(xn, . . . ,��xk , . . . , x0). Then, we require∑
xk

p(xn, . . . , xk, . . . , x0) = p(xn, . . . ,��xk , . . . , x0). (6)

This is the KCC, which is the defining property of a stochastic process. It says that not measuring

the system at some time has the same effect as measuring it and averaging over all possible results

(or measuring the system but forgetting the measurement result if you have a Bayesian attitude

towards probabilities).

The KCC implies that the joint probabilities of a stochastic process form a hierarchy, where

the k-time probabilities are contained in the n-time probabilities for n > k. Importantly, the

so called Daniell-Kolmogorov extension theorem guarantees that we can also go the reverse way.

If we have k-time probabilities satisfying the KCC, we can view them as marginals of n-time

probabilities that also satisfy the KCC. Moreover, this holds true even in the limit k → ∞.

Thus, the Daniell-Kolmogorov extension theorem provides a bridge between experimental reality

(where measurement statistics is always finite) and its theoretical description (which often uses

continuous-time dynamics in the form of, e.g., Eq. (1)). For a theoretical physicist this sounds

probably obvious, if you want to see a mathematical proof, take a look, e.g., at Ref. [4].

For the rest of this lecture it is now of outstanding importance to realize that Eq. (6) does not

come for free. There are many relevant examples that break the KCC, for instance:

• All systems involving feedback control (just imagine the probability on the left of Eq. (6)

being the probability based on the decision to apply feedback control conditioned on a

measurement result at time tk).

• Any sort of conditioning or interventions you might perform on the system break in general

the KCC. Imagine, e.g., a clinical trial where you change the process by giving some (but

not all) patients drugs.

• Quantum systems because quantum measurements are in general disturbing (in principle,

also classical measurements could be disturbing, of course).
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• In general: any sort of active intervention breaks KCC.

Finally, for later reference we briefly discuss the formal definition of Markovianity for a

stochastic process, i.e., a process that obeys the KCC. Let

p(xn|xn−1, . . . , x0) ≡
p(xn, xn−1, . . . , x0)

p(xn−1, . . . , x0)
(7)

be the conditional probability to be in state xn at time tn given that the system visited the states

xn−1, . . . , x0 at times tn−1, . . . , t0. Then, the stochastic process is Markovian if

p(xn|xn−1, . . . , x0) = p(xn|xn−1) ∀xn, n. (8)

Note that this definition requires to check a very large number of conditions (in fact, infinitely

many if you allow n → ∞), which makes it virtually impossible to check (full) Markovianity

experimentally. Nevertheless, the Markov assumption is so powerful that most text books on

stochastic processes actually are text books on Markovian stochastic processes (which might explain

the widespread confusion among scholars when it comes to non-Markovian processes). For instance,

Eq. (8) implies that Eq. (4) can be neatly expressed as

p(xn, . . . , x1, x0) = p(xn|xn−1) · · · p(x1|x0)p(x0), (9)

i.e., all what matters are the 2-time transition probabilities p(xk+1|xk) (and an initial condition).

Importantly, if the KCC is broken, e.g., in case of feedback control, Eq. (8) no longer gives an

adequate definition of Markovianity and the final goal of this lecture is solve this problem.

III. DISTINGUISHING CORRELATIONS AND CAUSATION

This is a wide topic, we will only touch the basics briefly. Evidently, the joint probability (4)

gives us the possibility to quantify correlations between different ‘events’, for instance, between

past and future values of the system state. Moreover, the system states x ∈ X could be bipartite,

i.e., the system could be composed out of two subsystems x = (y, z) ∈ X = Y × Z, and we could

quantify correlations between these two subsystems at various times.

Short digression. Since there are many ways to mathematically quantify correlations, we here

introduce for later use the mutual information (MI) between two random variables X and Y

with joint probability distribution p(x, y) and marginals p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y):

IX:Y ≡
∑
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
. (10)
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MI is a natural way to quantify correlations as it is based on Shannon’s theory of information.

It can be expressed as IX:Y = HX + HY − HXY where HX = −
∑

x p(x) ln p(x) is the Shannon

entropy. MI is non-negative and zero if and only if p(x, y) = p(x)p(y) is decorrelated. Moreover,

MI is upper bounded as IX:Y ≤ min{dimX,dimY } and the upper bound is reached for a state

about which we have no prior information regarding X or Y , but once we know the value of either

X or Y , the value of the other is uniquely fixed. If you feel unfamiliar with the concept of MI, it

might be useful to try to prove the statements above or to look, e.g., at Ref. [1].

Now, how about causation? Can we infer from a stochastic process whether one event is the

cause of another? Admittedly, this is a somewhat vague questions given that many different people

might have slightly different ideas of what “causality” shall mean. For instance, Hume famously

argued that the distinction between causation and correlation is merely verbal with the former

being applied to mean a “directed” correlation from past to future [5]. In fact, recalling that

quantum mechanics obeys time-reversal symmetry, it appears quite justified to claim that there

are no causes between events in microscopic interactions. However, the experienced world around

us does not obey time-reversal symmetry, and being able to distinguish between causation and

correlation becomes vital. For instance, is smoking and cancer just correlated, or does smoking

cause cancer? In the latter case, you can prolong your life when quitting smoking, in the former

case you don’t need to worry. Importantly, if you want to find out whether smoking causes cancer,

you have to stop or start smoking to see what happens, i.e., you have to change the process.

We return to the case of smoking at the end of this section, but the crucial insight is that

causation can be defined in a mathematically precise way if you look at how different variables

react to changes in the process. But this implies that you break the KCC (6) because you have to

actively intervene and you can no longer just passively observe the process. This way of thinking

about causality was made precise by Judea Pearl and others [2]. Is that the only way? I don’t

know, but I am not aware of any other precise and non-redundant mathematical definition of

causation. Below, I copy one example from Ref. [1] to make this reasoning precise. A more general

mathematical theory will be developed later.

Example. We consider three binary random variables S, B and C with values s, b and c. On

a given day S describes whether the sun is shining (s = 1) or not (s = 0), B describes whether

the number of sunburns is high (b = 1) or low (b = 0) and C describes whether the number

of ice cream sales is high (c = 1) or low (c = 0). We assume the notion of ‘high’/‘low’ to be
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chosen according to some reasonable treshhold. We further set the conditional probabilities to be

p(b = 1|s = 1) = p(c = 1|s = 1) = p(b = 0|s = 0) = p(c = 0|s = 0) = λ with 1/2 < λ ≤ 1, e.g.,

λ = 1 implies that the number of sunburns is always high if the sun is shining. By conservation

of probability, p(b = 0|s = 1) = p(c = 0|s = 1) = p(b = 1|s = 0) = p(c = 1|s = 0) = 1 − λ.

Furthermore, we assume the probability for a sunny day to be p(s = 1) = 1/2, which implies that

the sun is not shining with the same probability p(s = 0) = 1/2.

Now, we first look at the correlations between B and C as quantified by their MI:

IB:C ≡
∑
b,c

p(b, c) ln
p(b, c)

p(b)p(c)
= ln 2−Hbin(2λ− 2λ2). (11)

Here, Hbin(p) ≡ −p ln p− (1− p) ln(1− p) denotes the binary Shannon entropy and we computed

Eq. (11) by using p(b, c) =
∑

s p(b, c, s) =
∑

s p(b|s)p(c|s)p(s). We see that IB:C = 0 (no correla-

tions) implies λ = 1/2 and IB:C = ln 2 (maximal correlations) implies λ = 1. Thus, B and C are

in general correlated as expected

Next, we compute the correlations between S and B and find IB:S = ln 2−Hbin(λ), i.e., S and

B are maximally correlated (uncorrelated) for λ = 1 (λ = 1/2) as before. However, we strongly

believe that S is the cause of B (and also of C), i.e., the shining sun triggers sun burns (and ice

cream sales), but we do not believe that B is the cause of C or vice versa. How can we make this

intuition rigorous?

Assume that we have an external mechanism, which can change whether the sun is shining or

not (which seems unrealistic at first sight, but we come back to it below). We therefore introduce

an additional intervention variable IS (not to be mixed up with the MI), which labels the following

three actions i: Do nothing, i.e., leave the sun as it is (i = idle), make the sun shining (i = 1),

or block sun shine (i = 0). Now, consider the conditional probability p(b|s, i) for sun burns given

sunshine s and intervention i. For i = idle we set p(b|s, idle) = p(b|s) as defined above. Furthermore,

we assume p(b|s, i = 1) = λ and p(b|s, i = 0) = 1−λ independent of s because i ∈ {0, 1} overwrites

the natural value of s to be identical to i. Then, we find the MI between B and IS to be

IB:IS =
∑
b,i

p(b, i) ln
p(b, i)

p(b)p(i)
= Hbin[p(b)]− [1− p(i = idle)]Hbin(λ)− p(i = idle) ln 2, (12)

where the marginal probability p(i) that we perform a certain intervention is assumed to be con-

trollable in an experiment. We now define that S is a cause of B if there are correlations between

IS and B. From Eq. (12) we infer that there are no correlations between B and IS , i.e., S is not the

cause of B, if one of the following two cases happen: either p(i = idle) = 1, which corresponds to

the case that we do not perform any intervention and hence, cannot test for causality, or λ = 1/2,
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which implies that there are no correlations between B and S at first place. Furthermore, we find

in general p(b, s) 6=
∑

i p(b, s, i), where p(b, s) = p(b|s)p(s) is the joint probability from the begin-

ning obtained without interventions and p(b, s, i) = p(b|s, i)p(s)p(i) is the joint probability with

interventions. Thus, the KCC is broken in general unless p(i = idle) = 1 or p(i = 0) = p(i = 1).

Similarly, we could also replace B by C above and find that sunshine causes a high number of ice

cream sales.

Finally, let us return to our assumption that we can change the sunlight by an external in-

tervention. Indeed, such a mechanism is not easy to construct for a human. But to distinguish

causation and correlation, it is not necessary that humans perform the intervention: it could be

also done by nature, for instance, due to a solar eclipse. Important is only that we can fix the

intervention variable independent of the other variables in the model.

A. Does smoking cause lung cancer?

We are now (for good reasons) convinced that it does so, but this question caused a serious

scientific debate for around 15 years after World War 2. Why that? At that time scientists detected

a strong correlation between smoking and lung cancer, but could they use this evidence to claim a

causal link between the two? Consider the alternative explanation: There exists a special gene that

makes you both love cigarettes and prone to lung cancer. Can you rule out this explanation based

on the detected correlation between smoking and lung cancer? Not very easily and this caused

a big crisis among mathematicians and statisticians when they realized the shortcomings of their

method.

How could you detect that smoking causes lung cancer? The simplest direct way would be to

randomly select non-smokers and to force them to smoke 2 packs of cigarettes a day for 30 years.

Clearly, this way was not considered to be ethical, not to mention the problem that waiting for

30 years for the results is quite unsatisfactory. At the end, the debate was somewhat settled in a

rather indirect way by Jerome Cornfield et al. in 1959: They argued that, if such a gene existed, it

must have an enormously strong influence on people to explain the correlations in the data. That

a complex social phenomenon such as smoking is determined by such a single gene variation was

considered to be absurd by most biologists.

A more detailed history about the smoking-cancer debate is recollected in Ref. [6]. The some-

what saddest (and most interesting) point is that this debate is the first clear example of organized

denialism where powerful companies deliberately deceive the public about scientific facts. The
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tobacco industry founded and funded research committees, institutes, think tanks, and payed

scientists and journalists to obscure the truth, and they did this very successfully: the federal

non-smoking act (“Bundesnichtraucherschutzgesetz”) in Germany was published only in 2007!

Today, we are facing a much more existential threat from organized denialism: climate change!

Readers interested in finding out how the public was and is deceived about smoking or climate

change are strongly recommend to read Ref. [7]. Alright, let’s get back to our ivory tower...

IV. MODELLING INTERVENTIONS: STATES AND MAPS

After the necessity for more general interventions instead of only passive measurements has

become (hopefully) clear, we develop a mathematical framework for that. We start with the

classical case first and then turn to the quantum case. Perhaps surprisingly, both share a lot of

similarities, and in my view the quantum case is actually more elegant (and also needed for the

rest of this lecture). Moreover, here we only focus on interventions happening at a single time.

How to concatenate them to describe a process is explained in later sections.

A. Classical case

The state of a classical system can be conveniently described by a probability vector p with

entries p(x1), p(x2), . . . , p(xd), where d = dimX is the dimension of this vector, i.e., the number of

distinct system states that we can distinguish. For instance, a ‘pure’ state is given by p(xi) = δij

(Kronecker delta) for some j ∈ {1, . . . , d}, the maximally mixed state is p(xi) = 1/d for all i.

This state changes upon making an intervention, which is a broad terminology comprising

measurements with or without error, feedback control operations, state (re)preparations, noise

additions, etc. Clearly, the change of a vector is conveniently described by a matrix M and

we denote the state after the intervention as p̃′ = Mp. Working with a matrix guarantees the

important property of (convex) linearity: Suppose we have a state p = λp1 + (1 − λ)p2 with

λ ∈ [0, 1], which is an ensemble of two different states p1 and p2 (resulting, e.g., from different

initial state preparations), then Mp = λMp1 + (1− λ)Mp2, i.e., we can compute the effect of the

intervention on the different ensemble members separately to compute the joint effect.

As a warm-up example, we consider a non-disturbing measurement. If this measurement is

error-free, then we can write the matrix M(xi) corresponding to finding the system in state xi as

[M(xi)]mn = δmiδni or in Dirac notation (which we use from now on) M(xi) = |xi〉〈xi|. (13)
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It transforms the system state according to |p̃′(xi)〉 = M(xi)|p〉 = p(xi)|xi〉, i.e., |p̃′(xi)〉 has zeros

everywhere except at position i, where it contains the probability to find the system in state xi.

Notice that we put an additional “tilde” ∼ on top of the output state to indicate that |p̃′(xi)〉

is no longer normalized : its components do not sum up to one! Instead, its components sum

up to the probability p(xi) ≤ 1 to measure xi. This formulation might seem awkward at first

sight but will turn out to be advantageous. Finally, repeating the experiment many times gives

in general rise to different measurement outcomes, so M(xi) is just a member of a set of matrices

{M(x1), . . . ,M(xd)}.

How can we generalize this situation to measurements with errors? To this end, it is convenient

to introduce another random variable r to denote the measurement result. Then, let p(r|xi) be the

conditional probability to obtain result r given that the system is in state xi. For instance, for an

error-free measurement p(r|xi) = δr,i, but in general the conditional probability only needs to obey

p(r|xi) ≥ 0 for all r and xi and
∑

r p(r|xi) = 1. An imperfect measurement is then described by a

set of matrices {M(r)} with M(r) =
∑

i p(r|xi)|xi〉〈xi|, which transform the system state as

|p̃′(r)〉 = M(r)|p〉 =
∑
i

p(r|xi)p(xi)|xi〉. (14)

Again, |p̃′(r)〉 is not normalized, but the sum of its components equals the probability p′(r) ≡∑
i p(r|xi)p(xi) to obtain result r. We can normalize |p̃′(r)〉 by dividing it by p′(r). The components

of this normalized vectors are then the conditional probability to find the system in state xi given

that we measured result r:

p′(xi|r) =
〈xi|p̃′(r)〉
p′(r)

=
p(r|xi)p(xi)

p′(r)
. (15)

The reader should recognize this equation as Bayes’ rule.

So far the examples above involved only diagonal matrices. The general picture is the following

(an example follows afterwards). Any classical intervention is characterized by a set of matrices

{M(r)} with at least one (and in principle infinitely many) elements. Each element has to satisfy

the following property:

• Positivity: 〈xi|M(r)|xj〉 ≥ 0 for all xi, xj and r. This property ensures that all state vectors

remain positive, i.e., negative probabilities cannot occur.

Moreover, depending on the state p prior to the intervention, each M(r) can be realized with a

different probability given by p′(r) =
∑

i 〈xi|p̃
′(r)〉. However, in every repetition of the experiment

one M(r) must be realized. This translates to the following property:
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• Normalization: Let M ≡
∑

rM(r) describe the average affect of the intervention. Then,∑
i 〈xi|M |xj〉 = 1 for all xj .

Since the positivity requirements implies 〈xi|M |xj〉 ≥ 0, we notice that M is a stochastic matrix :

it is the most general transformation between probability vectors. Each M(r) can be called a

substochastic matrix : it maps probabilities to non-normalized “probabilities” whose norm (= sum

of its components) equals the probability for M(r) to occur.

Readers who found the last points very abstract are invited to explicitly confirm them for the

case of a measurement with error as introduced above (Bayes’ rule). Moreover, one easily confirms

in that case that
∑

r |p̃
′(r)〉 = M |p〉 = |p〉, i.e., on average the state vector does not change. Put

differently, Bayes’ rule describes the most general non-disturbing classical measurement.

Example for a disturbing classical measurement. Suppose you wonder whether you have

a gas leak in your apartment or not. Let x = 0 (x = 1) describe the state of your apartment

with no (with) gas inside. One way to find out whether you have gas inside your apartment, is

to wait outside and to ask your “best” friend to go and smoke a cigarette in your apartment.

Your measurement outcomes will be r = 0 or r = 1, depending on the question whether your

friend survives or not, respectively. But whatever the result is, you will for sure have no gas in

your apartment after the measurement. With respect to the ordered basis (|x = 0〉, |x = 1〉) =

(no gas, gas) we then find the following state transformation matrices:

M(0) =

1 0

0 0

 , M(1) =

0 1

0 0

 ⇒ M = M(0) +M(1) =

1 1

0 0

 . (16)

B. Quantum case

In quantum mechanics the state of a system is described by a density matrix ρ and changes in

the system state can be conveniently described using again linear maps C : ρ 7→ ρ′ = Cρ. Since

ρ itself is a matrix (or ‘operator’), such linear maps C are often called superoperators. In essence,

superoperators are just big matrices themselves. To see this, consider a quantum system with

Hilbert space dimension d = dimH. Then, ρ is a d × d matrix with complex entries, but since

matrices form a vector space, we can represent ρ alternatively by a complex vector with d2 many

entries. On that vector space C can be represented by an ordinary d2× d2 matrix (which is in fact

typically done in numerical applications).
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Sparing examples for later on, we start with the general theory, which much parallels what we

found for classical systems (with the difference that everything happens “one dimension higher”).

Hence, an intervention in quantum mechanics is described by a set {C(r)} of superoperators and

we denote the average effect by C ≡
∑

r C(r). Moreover, we like to ensure that any intervention

preserves the characteristic properties of the density matrix, i.e., we want that the output states

ρ̃′(r) = C(r)ρ describe a legitimate set of physical states for all legitimate input states ρ. This gives

rise to essentially the same requirements as above:

• Positivity: If ρ ≥ 0, we want that C(r)ρ ≥ 0 too. In fact, it turns out that this notion is not

strong enough. Consider a bipartite quantum system HX ⊗HY with state ρXY and suppose

C(r) is a map acting only on states in X. Then, we want for any input state ρXY ≥ 0 that

[C(r)⊗IY ]ρXY ≥ 0 where IY denotes the identity operation on Y . This is called complete

positivity.2

• Normalization: If tr{ρ} = 1, we want that tr{Cρ} = 1 too (this property is completely

analogous to the classical case).

As before, while probability is preserved on average, tr{Cρ} = 1, every single element C(r) is

applied with a certain probability p(r) ≡ tr{C(r)ρ} ≤ 1. Therefore, the state ρ̃′(r) = C(r)ρ has in

general not unit trace and we again use a tilde ∼ to denote this.

To introduce some standard terminology in the field, we call the C(r) completely positive (CP)

maps and C =
∑

r C(r) a completely positive and trace-preserving (CPTP) map. A set of CP maps

{C(r)} that adds up to a CPTP map is called an instrument. Moreover, there are two very

important representation theorems to mathematically characterize CP and CPTP maps:

Operator-sum representation. A map C is CPTP if and only if it can be written as

Cρ =
∑
α

KαρK
†
α (17)

for an arbitrary set of operators Kα (often called “Kraus operators”) satisfying
∑

αK
†
αKα = I (with

I the identity). The CP maps C(r) can be also written as in Eq. (17) for some set of operators Kα

satisfying
∑

αK
†
αKα ≤ I (with I the identity).

2 The reader can check that positivity implies complete positivity in the classical case, but for quantum systems

this is in general not true in presence of entanglement.
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Unitary (Stinespring) dilation theorem. A set of maps C(r) forms an instrument if and only

if there exists a d2-dimensional “ancilla” Hilbert space HA, a unitary U acting on the system and

ancilla space, a pure ancilla state |φ〉A ∈ HA and a set of projectors {ΠA(r)} acting on the ancilla

space such that

C(r)ρS = trA{ΠA(r)USA(ρS ⊗ |φ〉〈φ|A)U †SA} (18)

for all r. In particular, a map C is CPTP if and only if it can be written as

CρS = trA{USA(ρS ⊗ |φ〉〈φ|A)U †SA}. (19)

In particular the last representation theorem implies that any instrument can be generated

by unitary evolution (Schrödinger dynamics) and standard projective measurements in a suitable

larger system-ancilla space. A very similar theorem holds in the classical case with one important

difference: owing to the absence of entanglement, the initial state of the ancilla can in general not

be chosen to be pure but must be mixed [8].

This concludes our general exposition of single-time interventions in quantum systems. All what

we have done was to introduce terminology and notation to describe state changes a system can

experience in a lab when externally manipulated by some agent or experimenter. The examples

below make the abstract exposition above hopefully clearer. If not, feel free to replace density

matrices and superoperators by probability vectors and matrices as introduced in the classical

case. All what matters is the idea that there is a mathematical formalism to describe state changes,

which disturb the system and thus violate the Kolmogorov consistency condition (KCC) because

in general we have |p′〉 = M |p〉 6= |p〉 and ρ′ = Cρ 6= ρ in both, the classical and quantum case.

Exercise. Find either an explicit operator-sum representation or unitary dilation to show that

the following sets of maps are instruments:

• Unitary time-evolution: The set {C(r)} has only a single element C and define Cρ ≡ UρU †

for some unitary operator U satisfying UU † = U †U = I.

• Projective measurement: Consider an observable R =
∑

r λrΠr with eigenvalues λr and

corresponding projectors Πr. Now, set C(r)ρ ≡ ΠrρΠr such that Cρ =
∑

r ΠrρΠr. Verify

that p(r) = tr{C(r)ρ} is identical to Born’s rule.
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V. QUANTUM STOCHASTIC PROCESSES

Recall the basic idea of a stochastic process: there was a multi-time object

p(xn, tn; . . . ;x1, t1;x0, t0) that described the probability to obtain measurement results

x0, x1, . . . , xn at times t0 < t1 < · · · < tn. Next, recall our insight about causal models: if we want

to describe feedback control or quantum systems, we have to overcome the idea of non-disturbing

interventions (i.e., the KCC) and we need some multi-time object P [Cn(rn), . . . , C1(r1), C0(r0)] that

describes the probability to obtain results r0, r1, . . . , rn given that we applied the interventions

C0(r0), C(r1), . . . , C(rn). Can we construct such an object in a well-defined manner? It turns out

we can and we will construct it explicitly now.

To this end we assume that our system of interest S is coupled to an environment E. The total

state of system and environment at time t is ρSE(t). The total Hamiltonian of S and E is written

as H = HS +HE + V , where HS (HE) is the Hamiltonian of the system (environment) alone and

V describes their interaction. In absence of any external interventions, the total state evolves from

time s to time t according to

ρSE(t) = Ut,sρSE(s)U †t,s ≡ U(t, s)ρSE(s) with Ut,s = e−iH(t−s) (~ ≡ 1). (20)

Now, suppose we perform interventions at times t0 < t1 < · · · < tn using instruments

{C0(r0)}, {C1(r1)}, . . . , {Cn(rn)} (note that the choice of instruments can change from time to time).

The system-environment state conditioned on receiving results rn = (rn, . . . , r1, r0) at time tn right

after the last intervention is

ρ̃′SE(tn|rn) = Cn(rn)U(tn, tn−1) · · · C1(r1)U(t1, t0)C0(r0)ρSE(t0), (21)

where ρSE(t0) describes the initial state prior to the first intervention. Moreover, we suppressed

any tensor products with the identity operation in the notation, i.e., Ck(rk) ⊗ IE = Ck(rk). Since

the environmental state in inaccessible and we are only interested in the system state, we trace

over the environment:

ρ̃′S(tn|rn) = trE {Cn(rn)U(tn, tn−1) · · · C1(r1)U(t1, t0)C0(r0)ρSE(t0)}

≡ T[Cn(rn), . . . , C1(r1), C0(r0)].
(22)

Here, we have introduced the process tensor T[Cn(rn), . . . , C1(r1), C0(r0)]. It is a formal object

that describes the response of an open quantum system to any sequence of interventions. It is the

most abstract object we will meet in this lecture and it is certainly extremely hard to compute

the process tensor in many practical applications. However, we will not attempt to compute T
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Figure 1. Graphical representation of the process tensor with time running from left to right.

explicitly here; what matters for us is that it is a universal tool that allows us to address many

complicated question within a unified framework. So let’s try to find out some general properties

of it:

1. First, a graphical representation of the process tensor is given in Fig. 1. The process tensor

comprises the effect of everything colored in red, whereas the blue boxes represent the inter-

ventions that an experimenter is free to choose (in contrast, everything colored in red is not

under (detailed) control of the experimenter). Note that the red object looks like a comb.

Therefore, the process tensor is also often called a quantum comb [9].

2. The process tensor really is a tensor, i.e., an object acting multi-linearly on its entries.

Indeed, you can easily confirm that

T[An, . . . , aAk + bA′k, . . . ,A0] = aT[An, . . . ,Ak, . . . ,A0] + bT[An, . . . ,A′k, . . . ,A0] (23)

for any k ∈ {0, . . . , n}, any maps Ak and A′k and any complex numbers a, b ∈ C.

IfHS denotes the Hilbert space of the system, then we write ρ ∈ L(HS) with L(HS) the space

of linear maps acting on HS . Following this notation, a superoperator lives in L(L(HS)) (the

space of linear maps acting on linear maps over HS), and consequently the process tensor

describes the map:

T : L(L(HS))⊗ · · · ⊗ L(L(HS))︸ ︷︷ ︸
n+ 1 times

→ L(HS). (24)

That is, T is a “super-superoperator”.

3. Since T acts linearly on each of its entries, it suffices to know its action for one particular set

of basis interventions to know the action of T for any intervention. Recall that L(L(HS))

is a vector space and thus every superoperator A =
∑

α,β cαβBαβ can be written as a linear

combination of basis superoperators Bαβ and complex coefficients cαβ ∈ C. A particularly
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convenient basis {Bαβ} is given by superoperators of the form

BαβρS ≡ σ
(α)
S tr{ΠβρS}. (25)

Here, {Πβ} is an “informationally complete” set of d2 many projectors3 and σα is a linearly

independent set of d2 many quantum states (density matrices). The operational meaning

of Eq. (25) is thus to measure the quantum system with respect to some projector Πβ and

to prepare it afterwards in the new state σα. Any action of the process tensor can then be

inferred from its basis elements

T [Bαnβn , . . . ,Bα1β1 ,Bα0β0 ] (26)

and suitable linear combination. Note that there are d4(n+1) many such basis elements!

4. Using the basis above, we see that the sequence of control operations Cn(rn), . . . , C1(r1), C0(r0)

is associated to the vector∑
αn,βn

cαnβnBαnβn ⊗ · · · ⊗
∑
α1,β1

cα1β1Bα1β1 ⊗
∑
α0,β0

cα0β0Bαβ (27)

living in the (n + 1)-fold tensor product of L(L(HS)). We now recognize that choosing at

each time tk an independent instrument {Ck(rk)} just represents one possible intervention

out of a much larger class. In general, any intervention of the form∑
αn,βn

· · ·
∑
α1,β1

∑
α0,β0

cαnβn,...,α1β1,α0β0Bαnβn ⊗ · · · ⊗ Bα1β1 ⊗ Bαβ (28)

is conceivable, where the coefficients cαnβn,...,α1β1,α0β0 need not factorize as in Eq. (27).

This allows to implement a much larger class of control operations—in fact, it allows to

implement the most general state transformation permitted by the laws of quantum mechanics

and the requirement of causality (meaning that we have an ordered set of times t0 < t1 <

· · · < tn). Thus, the formalism above is also known as a quantum causal model (see

Refs. [3] and references therein). Nevertheless, we remark that the response of the system to

any whatsoever complicated intervention is contained in the basis elements (26) describing

simple independent measure-and-prepare interventions. This is a very important statement

and follows from the linearity of any stochastic theory.

3 Informationally complete here means that the set {Πβ}

is a basis for L(HS). For instance, for a qubit an infor-

mationally complete basis is given by the two projectors

on the eigenspaces of σz plus one projector on any one

eigenspace of both σx and σy.
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5. Finally, notice that the identity operation I is a legitimate intervention too (“do nothing”).

Thus, the process tensor defined on the set of times {t0, t1, . . . , tn} contains the process ten-

sors defined on any subset of times. This generalizes the KCC (6) for arbitrary interventions

and allows to prove a generalized extension theorem [10].

To conclude, the process tensor encodes the response of an open system for all possible inter-

ventions that one can apply to it, and the probability for a particular intervention is

P (rn) ≡ P [Cn(rn), . . . , C1(r1), C0(r0)] = trS{T[Cn(rn), . . . , C1(r1), C0(r0)]}. (29)

This suggests to identify the process tensor formalism with the notion of a quantum stochastic

process.

VI. OPERATIONAL MARKOV CONDITION

The formalism developed above is valid for Markovian or non-Markovian dynamics. The ques-

tion is now: given the process tensor, how can we decide whether the process is Markovian?

To this end, we introduce the notion of a causal break. A causal break is a specific intervention

B, which ensures that the output state ρ′S = BρS is independent of the input state ρS . This

guarantees that the system state ρ′S carries no memory about its past. Thus, if after a causal

break the future evolution of the system depends on past interventions, this can only be because

the environment retained a memory about past interventions in a way that influences the system

dynamics.

Mathematically, it might not be surprising that causal breaks can be written in the form of

Eq. (25): whatever the input state ρS was, the output state is σ
(α)
S . Moreoever, recall that the

final state of the process in Eq. (22) is not normalized, but occurs with probability (29). We denote

the corresponding normalized state as

ρn[Cn(rn), . . . , C1(r1), C0(r0)] ≡
ρ̃′S(tn|rn)

P (rn)
=

T[Cn(rn), . . . , C1(r1), C0(r0)]
trS{T[Cn(rn), . . . , C1(r1), C0(r0)]}

. (30)

We can now define a quantum Markov process as first done in Ref. [11] (we remark that this

definition reduces to the causal Markov condition for a classical causal model [2]):

Quantum Markov process. A quantum stochastic process is Markovian if the normalized system

state at time t` after a causal break at time tk < t` depends only on the input state σ
(αk)
S for any
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set of previous interventions C(rk−1), . . . , C(r0) and for all tk < t`. In equations,

ρ`[Bαkβk , C(rk−1), . . . , C(r0)] = ρ`[σ
(αk)
S ]. (31)

Now, Markov processes are popular because they imply strong theoretical simplifications. In-

stead of dealing with the complicated process tensor of Eq. (22), it turns out that the process

tensor “factorizes” and can be written for any sequence Cn, . . . , C1, C0 of superoperators as

T[Cn, . . . , C1, C0] = CnE(tn, tn−1) · · · C1E(t1, t0)C0ρS(t0). (32)

Here, ρS(t0) is the initial system state and {E(tk, tk−1)|k ∈ {1, . . . , n}} is a set of CPTP maps,

which propagate the system state forward in time from tk−1 to tk and which are independent of the

applied interventions. In the theory of open quantum systems, these maps are called dynamical

maps; for a classical stochastic system one would call them transition matrices. We will not derive

Eq. (32) here, but hope that the reader finds it intuitive that the time evolution of a Markov process

is described by a set of maps or propagators independent of the applied interventions (the eager

reader with some background in open quantum system theory is, of course, invited to attempt a

proof).

Now, consider the following simple example involving time-delayed feedback. At time t0 we

apply an intervention C0(r0) (some measurement) and receive result r0, then at time t1 we apply

a causal break Bα1β1 , and at time t2 we apply an intervention C2(r0), which depends on the first

measurement result (that’s the time-delayed feedback control). Does the resulting normalized

system state depend on C0(r0)? A quick calculation reveals

ρ2[C2(r0),Bα1β1 , C0(r0)] =
C2(r0)E(t2, t1)Bα1β1E(t1, t0)C0(r0)ρS(t0)

trS{C2(r0)E(t2, t1)Bα1β1E(t1, t0)C0(r0)ρS(t0)}

=
C2(r0)E(t2, t1)σ

(α1)
S trS{Πβ1E(t1, t0)C0(r0)ρS(t0)}

trS{C2(r0)E(t2, t1)σ
(α1)
S }trS{Πβ1E(t1, t0)C0(r0)ρS(t0)}

=
C2(r0)E(t2, t1)σ

(α1)
S

trS{C2(r0)E(t2, t1)σ
(α1)
S }

= ρ2[C2(r0), σ(α1)
S ],

(33)

i.e., it does not. This appears counterintuitive as one could (rightfully) claim that, if we hadn’t

received result r0 in the first measurement, we wouldn’t apply the control operation C2(r0) at time

t2. However, notice that no information about the earlier system state at time t0 is transmitted

through the environment : the dynamical map E(t2, t1) does not depend on C0(r0). It is only because

we (or the external agent) decide to retain some memory about r0 reflected in the intervention

C2(r0), which is something extrinsic to the process tensor.
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This might become even more clear by recalling point 4. from the last section. The experimenter

could first decide to infer all basis elements (26) from decorrelated causal breaks (no feedback

control involved), and afterwards they could compute the response of the system to any feedback

control law by suitable linear combination. That is, the decision of the experimenter to keep some

memory and to apply a “non-Markovian” control strategy is completely extrinsic to the process

itself. The question whether the process is Markovian (or not) is determined by the nature of the

environment and can be decided for any basis of interventions based on Eq. (31).

Finally, another perspective is offered by imagining that the experimenter simply decides from

the beginning on to apply a causal break Bα1β1 at time t1 and an intervention C2(r0) at time t2

(with the value of r0 decided independently). Does the resulting final state ρ2[C2(r0),Bα1β1 , I]

differ from the state ρ2[C2(r0),Bα1β1 , C0(r0)] if we had applied a measurement and feedback loop?

It does not because the environment is unable to transmit any memory about the system state

prior to the causal break.

However, a naive application of the Markov condition (8) for a classical stochastic process would

typically imply that p(x2|x1, x0) 6= p(x2|x1), i.e., the process looks non-Markovian from that point

of view. This problem is caused by the fact that the language of a classical stochastic process is not

suitable to distinguish between properties intrinsic to the process and external influences. And in

fact, if there are no disturbing interventions, this distinction is superfluous: a measurement of the

system state x at time t just reveals some preexisting property and does not change the process. To

summarize, Eq. (8) checks a general condition on correlations in time independent of their origin,

whereas Eq. (31) checks for correlations in time caused by the environment.

Naturally, in some limit the notion of a classical stochastic process must be contained in the

process tensor formalism. To find it, we need two assumptions. First, we need to fix the inter-

ventions {Ck(rk)} that we apply at some time tk, say, projective measurements of some observable

R such that C(rk)ρS = |rk〉〈rk|ρS |rk〉〈rk|. Second, these interventions must be non-disturbing on

average. Moreover, if the process is Markovian according to the generalized condition (31), we find

Eq. (8) as it should be:

P (rn|rn−1) =
P (rn)

P (rn−1)
=

trS{C(rn)E(tn, tn−1) · · · C(r1)E(t1, t0)C(r0)ρS(t0)}
trS{C(rn−1)E(tn−1, tn−2) · · · C(r1)E(t1, t0)C(r0)ρS(t0)}

=
〈rn|

[
E(tn, tn−1)|rn−1〉〈rn−1|

]
|rn〉 . . . 〈r1|

[
E(t1, t0)|r0〉〈r0|

]
|r1〉〈r0|ρS(t0)|r0〉

〈rn−1|[E(tn−1, tn−2)|rn−2〉〈rn−2|]|rn−1〉 . . . 〈r1|
[
E(t1, t0)|r0〉〈r0|

]
|r1〉〈r0|ρS(t0)|r0〉

= 〈rn|
[
E(tn, tn−1)|rn−1〉〈rn−1|

]
|rn〉 = P (rn|rn−1). (34)
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