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Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

(Dated: September 30, 2022)

This short series of four lectures about the dynamics and thermodynamics of open quantum

systems has three parts. In the first part, we study the widely considered weak coupling

regime, derive various quantum MEs with increasing simplicity (but decreasing accuracy),

and discuss the nonequilibrium thermodynamics based on the Born-Markov-secular equation.

The second part introduces some useful tools to deal with the complications associated to

short-time dynamics, initial system-bath correlations, strong system-bath coupling and non-

Markovianity. In the third part we introduce a general thermodynamic framework based on

microscopic definitions for internal energy, work, heat, entropy and temperature. Based on

these definitions and one assumption about the initial state we derive the first law, second

law and Clausius’ inequality.
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I. DYNAMICS AND THERMODYNAMICS IN THE WEAK COUPLING REGIME

A. System-bath theory

Review: Closed/Isolated Quantum Systems. The state (or density matrix) ρ of a closed

or isolated quantum system evolves according to the Liouville-von Neumann equation (~ ≡ 1

throughout):

∂

∂t
ρ(t) = −i[H, ρ(t)], (1)

where H is the Hamiltonian and [A,B] ≡ AB −BA the commutator. For an initial state ρ(0) the

formal solution of this equation can be written as

ρ(t) = U(t)ρ(0)U †(t) with U(t) = exp(−iHt) (unitary time-evolution operator). (2)

This time-evolution has a couple of elementary properties. Most importantly, if we diagonalize the

density matrix

ρ(t) =
∑
k

λk|ψk(t)〉〈ψk(t)|, (3)

we find that the eigenvalues λk are time-independent1 and only the orthonormal set of eigenvectors

|ψk(t)〉 evolves in time. This has three important implications:

(i) The time-evolution can be equivalently described by the Schrödinger equation

∂

∂t
|ψk(t)〉 = −iH|ψk(t)〉. (4)

(ii) Isolated quantum systems preserve the purity of a state: tr{ρ(t)2} = tr{ρ(0)2} ≤ 1. If

tr{ρ2} = 1, the state is pure and can be written as ρ = |ψ〉〈ψ| for some |ψ〉.

1 Proof: The eigenvalues of ρ(t) are determined by the

characteristic polynomial det{ρ(t) − λI} and the de-

terminant is invariant under unitary transformations:

det{UAU†} = det{A} for any A and any unitary U .
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(iii) The von Neumann entropy of any state ρ

SvN(ρ) ≡ −tr{ρ ln ρ} (5)

is constant in time: SvN[ρ(t)] = SvN[ρ(0)]. This has important implications for the question

as to whether SvN(ρ) can be used as thermodynamic entropy, which we discuss later in detail.

We remark that all what we said above remains true if the Hamiltonian H = H(λt) has some

external time-dependence due to the presence, e.g., of a laser field. Note that we write H(λt)

instead of H(t) to avoid confusion with the Heisenberg picture. This notation is widely used in

quantum thermodynamics, where λt is also called a driving or control protocol. A system described

by a time-dependent Hamiltonian is also called a driven system.

Open quantum systems. In practice, nobody has ever seen an isolated quantum system at the

very end because “seeing” a quantum system requires to couple it to some external detector (or

“observer”). However, we are here less interested in quantum measurement theory than in the fact

that all quantum systems in nature (with the possible exception of the cosmological universe itself)

are coupled to many uncontrollable degrees of freedom of an environment or bath. Examples:

• Open system: A cavity (= two convex mirrors facing each other). Bath: the electromagnetic

modes surrounding the cavity. → quantum optics

• Open system: An impurity. Bath: the phonons and electrons of the surrounding solid state.

→ solid state physics, Kondo physics

• Open system: A quantum dot (= a zero dimensional nanostructure or artifical atom). Bath:

everything surrounding it (typically phonons and electrons too). → quantum transport

• Open system: some medium sized particle (historically a pollen). Bath: the “soup” surroud-

ing it (typically water or some aqueous solution). → quantum Brownian motion

• Many more examples...

Modelling Open Quantum Systems. Historically, many different approaches have been devel-

oped to describe open quantum systems. The approach that we follow here assumes that the bath

itself is also a (typically big) quantum system and that the system and bath together are isolated.

This means that the system and bath are described on a Hilbert space HSB = HS ⊗ HB, which
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is the tensor product of the system Hilbert space HS and the bath Hilbert space HB. The total

Hamiltonian is written as

HSB = HS ⊗ IB + IS ⊗HB + VSB ≡ HS +HB + VSB, (6)

where VSB is the system-bath (SB) interaction or coupling and in the second step we have sup-

pressed tensor products with the identity IS or IB. Since the system and bath are isolated, the SB

state ρSB(t) evolves in time according to the Liouville-von Neumann equation (1) with H replaced

by HSB. Finally, the reduced state of the system only is obtained by a partial trace over the bath

degrees of freedom:

ρS(t) = trB{ρSB(t)}. (7)

The description above is known as a SB theory and it has become standard in the community.

This is probably for the fact that one can prove that any dynamics ρS(t) of an open quantum

system can be always obtained as the reduced dynamics on some larger “SB” space. Thus, we

have actually made no assumption in our modelling above. We will not prove this statement here,

which is known as a dilation theorem.

Due to the partial trace over the bath, open quantum systems behave very differently from

isolated quantum systems. We explore this in greater detail below, but here we already summarize:

Key observation: Open quantum systems in general violate the three properties (i), (ii) and

(iii) listed above. Depending on the context and the community this gives rise to phenomena called

decoherence, dissipation and irreversibility.

Some Terminology. Instead of saying “open (quantum) system” we typically speak of

“the system” only, tacitly assuming that it has to be understood in context of a SB theory.

Moreover, the reader might have noticed that the words “isolated”, “closed” and “open” are

used a bit differently in thermodynamics. There, an isolated system can only exchange work

with its surroundings, a closed system can exchange work and heat in form of energy with its

surroundings, and an open system can exchange work and heat in form of energy and particles

with its surroundings. Here, instead, we call a system isolated whenever it evolves unitarily—

and thus obeys the properties (i), (ii) and (iii) above—and all other systems are simply called open.
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B. Quantum master equations

The goal of open quantum systems theory is to understand the behaviour of the reduced state

ρS(t) defined in Eq. (7). Unfortunately, in most practical applications the number of degrees of

freedom of the bath is so large (typically of the order of the Avogadro constant NA ∼ 1023) such

that an explicit solution of the Liouville-von Neumann equation remains (forever!) out of reach.

However, we are also not interested in knowing the precise state of the bath. Ideally, we are aiming

at describing the dynamics of ρS(t) in terms of an effective differential equation, which is closed

in ρS(t), i.e., it does not require explicit knowledge of the full SB state ρSB(t). We call any such

effective equation a quantum master equation (ME) and write it in general as

∂

∂t
ρS(t) = LρS(t), (8)

where we call L the Liouvillian. How to determine L is, of course, the question we need to

answer. We remark that whenever it is possible to (approximately) find such a L, this certainly

has something “masterly” as it captures the entire complexity of the SB dynamics in some simple

effective equation for the system only.

Mathematical Digression: Superoperators. In ordinary quantum mechanics one is used to

deal with vectors (such as |ψ〉) and operators or matrices (such as H, ρ, . . . ) acting on vectors. In

quantum statistical mechanics, however, we like to find evolution equations for ρ, which is itself

a matrix. Moreover, for a valid statistical interpretation we like to have evolution equations that

are linear in ρ. Abstractly, we have denoted that by L above. Since L linearly maps operators

onto operators, it is called a superoperator. All superoperators in this manuscript are denoted with

calligraphic symbols.

Examples. We have already seen two possible superoperators. One example is the commutator,

which can be defined as CA : ρ 7→ [A, ρ] for an arbitrary but fixed A. A second example is the

partial trace on a bipartite Hilbert space HA⊗HB, which can be defined as PB : ρAB 7→ trB{ρAB}.

Note that the partial trace maps operators defined on HA ⊗HB to operators defined on HA only,

i.e., the dimension of the input and output space changes. Readers unfamiliar with superoperators

should convince themselves that the maps defined above are indeed linear.

Construction. Operators such as H or ρ form a vector space themselves: the set of complex

d× d matrices is isomorphic to the vector space Cd2 . Thus, we can think of superoperators just as

“big d2 × d2 matrices”. This is indeed often done in numerical calculations. To that end, we need



6

some recipe how to map matrices to vectors. Importantly, there is no unique recipe. For instance,

one possibility is to use the following identification between matrices and vectors:

ρ =
∑
k,l

ρkl|k〉〈l| ↔ |ρ〉〉 =
∑
k,l

ρkl|kl〉〉 ≡
∑
k,l

ρkl|k〉 ⊗ |l〉∗. (9)

Here, {|k〉} is some fixed basis of the Hilbert space H and the star ∗ denotes complex conjugation.

Thus, matrices acting on H are represented by vectors on H⊗H, for which we used a “double-ket”

| . . . 〉〉 notation. Now, consider an arbitrary superoperator A, which can be always written as (we

omit a proof of this statement) Aρ =
∑

j XjρYj for some set of operators {Xj} and {Yj}. Now,

the interested reader might want to show that the matrix representation of A, denoted with a hat

as Â, with respect to the mapping above is

Aρ =
∑
j

XjρYj ↔ Â =
∑
j

Xj ⊗ Y T
j , (10)

where T denotes transpose. To derive this statement, one has to show that the matrix elements

(Aρ)kl in the “normal” representation equal the vector elements 〈〈kl|Â|ρ〉〉, where 〈〈σ|ρ〉〉 denotes

the usual scalar product of two complex vectors.

It might sound surprising, but whenever the initial SB state is decorrelated,

ρSB(0) = ρS(0) ⊗ ρB(0), it is almost always possible to find a ME of the form (8). This

ME is known as the (time-convolutionless) Nakajima-Zwanzig master equation. Unfortunately,

the final form of this equation is very formal and of little use in practice. More theoretically

oriented readers should definitely check out its derivation, but we here follow a different path,

which offers more physical intuition, captures many situations studied in the literature, and relies

on one central assumption.

Weak coupling approximation. It turns out that for many interesting experimental platforms

the interaction VSB between the system and the bath is weak. For instance, the interaction between

atoms and light is typically weak; if the cavity has good mirrors, the modes inside the cavity couple

weakly to the outside modes; transport experiments with quantum dots can be tuned such that

the dot couples weakly to the metallic leads, etc. Thus, our goal in the following is to derive a

quantum ME perturbatively to second order in VSB.

To tackle this problem, we return to the Liouville-von Neumann equation, but switch to the

interaction picture with respect to HS+HB and denote ÕSB(t) ≡ ei(HS+HB)tOSBe
−i(HS+HB)t. The
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initial time, at which the Schrödinger, Heisenberg and interaction picture coincide, is t0 = 0. The

Liouville-von Neumann equation in the interaction picture reads

∂

∂t
ρ̃SB(t) = −i[ṼSB(t), ρ̃SB(t)]. (11)

A formal integration of it yields

ρ̃SB(t) = ρ̃SB(0)− i
∫ t

0
ds[ṼSB(s), ρ̃SB(s)]

= ρ̃SB(0)− i
∫ t

0
ds[ṼSB(s), ρ̃SB(0)]−

∫ t

0
ds

∫ s

0
ds′[ṼSB(s), [ṼSB(s′), ρ̃SB(s′)]],

(12)

where the second equality arose from iteratively inserting the result of the first line. Taking the

time derivative again and tracing out the bath degrees of freedom gives rise to the still formally

exact equation

∂

∂t
ρ̃S(t) = −itrB{[ṼSB(t), ρ̃SB(0)]} −

∫ t

0
dstrB{[ṼSB(t), [ṼSB(s), ρ̃SB(s)]]}. (13)

This is our starting point for approximations now.

Born Approximation. Our first assumption motivated by weak-coupling considerations is that

the initial state reads

ρSB(0) = ρS(0)⊗ πB(β) with πB(β) =
e−βHB

ZB
. (14)

This state describes a system prepared in an arbitrary initial state ρS(0) decoupled from a bath

described by a canonical ensemble or thermal state at inverse temperature β. Since one often does

not have more information than the temperature of the bath, this seems a reasonable guess in

many situations.2 However, various generalizations will be discussed below.

The fact that the bath is assumed to be prepared in a fixed state allows us to get rid of the first

term on the right hand side of Eq. (13), i.e., we can set

trB{ṼSB(t)πB(β)} = 0 (15)

without loss of generality. To see this, suppose that AS ≡ trB{ṼSB(t)πB(β)} 6= 0. Then, we

redefine the system and interaction Hamiltonian such that H ′S ≡ HS + AS and V ′SB ≡ VSB − AS ,

which implies trB{Ṽ ′SB(t)πB(β)} = 0 by construction.

2 Note that Eq. (14) is compatible with the maximum entropy principle for a given ρS(0) and a given average

bath energy 〈HB〉.
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Furthermore, we assume that to lowest order in the interaction VSB we can set

ρ̃SB(t) = ρ̃S(t)⊗ πB(β) +O(VSB) (16)

for all times t, which is called the Born approximation. Thus, we obtain from Eq. (13) up to

second order in VSB the approximate equation

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrB{[ṼSB(t), [ṼSB(s), ρ̃S(s)⊗ πB(β)]]}. (17)

First Markov Approximation. Equation (17) is a closed integro-differential equation for the

system state ρS(t). The fact that ρS(t) appears in it in a time-convoluted form makes its application

in practice difficult. However, to lowest order in VSB we have in the interaction picture ρ̃S(t) =

ρ̃S(s) + O(VSB). This insight suggests that it is justified to replace ρ̃S(s) by ρ̃S(t) in Eq. (17),

which is known as the first Markov approximation. We then obtain the ME:

∂

∂t
ρ̃S(t) = −

∫ t

0
dstrB{[ṼSB(t), [ṼSB(s), ρ̃S(t)⊗ πB(β)]]}. (18)

To make this equation more explicit, we assume that the SB interaction can be written as

VSB = A⊗B, where A (B) are Hermitian system (bath) operators. The treatment of the general

case VSB =
∑

αAα⊗Bα does not reveal further physical insights and can be found in the literature

cited at the end. Now, an important role in the following plays the bath correlation function

C(t) ≡ trB{B̃(t)BπB(β)}, (19)

which determines the influence of the bath on the system to second order. To see this, we use

trB{B̃(t)B̃(s)πB(β)} = trB{B̃(t− s)BπB(β)} and that the trace is cyclic, which allows us to write

Eq. (18) as

∂

∂t
ρ̃S(t) =

∫ t

0
ds
{
C(t− s)

[
Ã(s)ρ̃S(t)Ã(t)− Ã(t)Ã(s)ρ̃S(t)

]
+ C(s− t)

[
Ã(t)ρ̃S(t)Ã(s)− ρ̃S(t)Ã(s)Ã(t)

]}
.

(20)

Notice that C∗(t) = C(−t), so the second line is the Hermitian conjugate of the first. Furthermore,

after substituting τ ≡ t− s in the integral, we find

∂

∂t
ρ̃S(t) =

∫ t

0
dτC(τ)

[
Ã(t− τ)ρ̃S(t)Ã(t)− Ã(t)Ã(t− τ)ρ̃S(t)

]
+ h.c. (21)

Second Markov Approximation. If the bath is very large, i.e., effectively infinite, one expects

that C(τ) decays to zero for τ →∞: after some time the bath can no longer remember some initial

weak perturbation. The crucial idea of the following step is to assume that this decay is very quick,
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i.e., the bath is essentially memoryless. If this is the case, we can extend the upper limit of the

integral in Eq. (21) to infinity, which is known as the second Markov approximation. This yields

∂

∂t
ρ̃S(t) =

∫ ∞
0

dτC(τ)
[
Ã(t− τ)ρ̃S(t)Ã(t)− Ã(t)Ã(t− τ)ρ̃S(t)

]
+ h.c. (22)

Althought this seems like a small change compared to Eq. (21), the numerical and analytical

treatment of Eq. (22) is considerably simpler. Therefore, this equation has a specific name in

the literature known as the Born-Markov or Redfield equation. We note that, even if the

Markov approximation is not justified, we can use the Born-Markov equation whenever we are

only interested in the long time limit of the dynamics. Then, Eq. (21) reduces automatically to

Eq. (22), which is sufficient to study steady state transport processes at weak coupling. However,

for other applications, e.g., in spectroscopy, the short time dynamics can be important and it is

not justified to use Eq. (22).

Secular approximation. In the literature one often finds another final approximation, which is

applied for reasons we discuss below. To this end, we first look at the system coupling operator A

in the interaction picture. With the help of the eigenbasis of HS =
∑

s εsΠ(εs) we write

Ã(t) =
∑
s,s′

e−i(εs′−εs)tΠ(εs)AΠ(εs′) ≡
∑
ω

e−iωtA(ω). (23)

Here, ω = εs′ − εs is an index running over all transition frequencies of HS and we defined A(ω) ≡∑
εs′−εs=ω

Π(εs)AΠ(εs′). Equation (23) can be regarded as a Fourier decomposition of the system

coupling operator in the interaction picture. The Fourier components A(ω) obey the properties

A†(ω) = Aα(−ω), [A(ω), HS ] = ~ωA(ω), A(ω)πS(β) = e−β~ωπS(β)A(ω), (24)

where πS(β) = e−βHS/ZS is the Gibbs state of the system. The derivation of these properties is

left as an exercise for the reader.

The Born-Markov equation can then be written as

∂

∂t
ρ̃S(t) =

∑
ω,ω′

ei(ω
′−ω)tΓ(ω)

[
A(ω)ρ̃S(t)A†(ω′)−A†(ω′)A(ω)ρ̃S(t)

]
+ h.c., (25)

where we defined the half-sided Fourier transform of the bath correlation function

Γ(ω) ≡
∫ ∞
0

dτeiωτC(τ). (26)

Now, observe whenever ω − ω′ � |Γ(ω)|, the terms ei(ω−ω
′)t in Eq. (25) oscillate quickly in

time compared to the time evolution induced by the ‘rates’ Γαα′(ω) and, consequently, the factor
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ei(ω−ω
′)t will effectively average out during the evolution. Thus, one sets ei(ω−ω

′)t = δω,ω′ , which is

known as the secular approximation. Readers familiar with quantum optics might recognize this

approximation as a variant of the rotating wave approximation with the difference that it is not

applied to the Hamiltonian but to the ME. This leads to the Born-Markov-secular (BMS) ME

∂

∂t
ρ̃S(t) =

∑
ω

Γ(ω)
[
A(ω)ρ̃S(t)A†(ω)−A†(ω)A(ω)ρ̃S(t)

]
+ h.c. (27)

The form of this equation can be made more intuitive by writing Γ(ω) = γ(ω)/2 + iλ(ω), where

γ(ω) and λ(ω) are real-valued. Their precise definition is

γ(ω) ≡ Γ(ω) + Γ∗(ω) =

∫ ∞
−∞

dτeiωτC(τ), (28)

λ(ω) ≡ 1

2i
[Γ(ω)− Γ∗(ω)] =

1

2i

∫ ∞
−∞

dτsgn(τ)eiωτC(τ) (29)

with the sign function sgn(τ) = 2Θ(τ)− 1. Thus, Eq. (27) can be also expressed as

∂

∂t
ρ̃S(t) = −i

∑
ω

λ(ω)[A†(ω)A(ω), ρ̃S(t)] +
∑
ω

γ(ω)

[
A(ω)ρ̃S(t)A†(ω)− 1

2
{A†(ω)A(ω), ρ̃S(t)}

]
.

(30)

This finishes the derivation of MEs in the weak coupling approximation. Before investigating the

properties of the BMS equation in the next section, we finish with some general remarks.

First, Eq. (30) reveals that the influence of the bath on the system dynamics has two con-

tributions. The first describes environmentally induced modifications of the unitary part of the

dynamics. The term

HLS ≡
∑
ω

λ(ω)A†(ω)A(ω) (31)

is called the Lamb shift Hamiltonian. It is easy to show that [HS , HLS] = 0, which implies that

the Lamb shift Hamiltonian shifts the eigenenergies, but leaves the eigenbasis unchanged. In prac-

tice, computing the Lamb shift Hamiltonian can be cumbersome due to the involved integral (29)

and it is therefore often neglected. There are two more reasons to neglect it. First, one often

derives the system Hamiltonian HS not from a first-principle (ab initio) calculation, but infers the

transition frequencies ω experimentally. During this procedure, the system is usually in contact

with the bath; hence, the so inferred transition frequencies contain already the bath induced renor-

malizations. Including HLS in the final result would then count them twice. The second reason for

neglecting HLS relates to the fact that the perturbative hierarchy (beyond second order in VSB) to

compute HLS can converge poorly. For instance, the fourth order contribution can have a strong

impact even at weak coupling and can tend to cancel out the second order contribution. Indeed,
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benchmarks with exactly solvable models have shown that excluding HLS can sometimes improve

the accuracy of the ME. Therefore, we take a pragmatic point of view on HLS and drop it in the

following or, if its contribution is important, assume it to be included in the definition of HS .

The second term of Eq. (30) describes the for us more interesting non-unitary modifications

of the system dynamics. It causes effects such as decoherence, dissipation and thermalization,

which will become obvious soon. Therefore, the second line is often simply abbreviated as Dρ̃S(t),

where the superoperator D is known as the dissipator. Furthermore, the secular approximation

guarantees that the dissipator commutes with the interaction picture transformation, i.e.,

eiHSt/~[DρS(t)]e−iHSt/~ = Dρ̃S(t). (32)

Thus, going back to the Schrödinger picture, the BMS equation reads in short form

∂

∂t
ρS(t) = − i

~
[HS , ρS(t)] +DρS(t) ≡ LBMSρS(t). (33)

Of course, the question remains which of the various MEs derived here should be used in

practice. This question has been around since the beginning of this field. Personally, I advice to

use the following philosophy.

For any particular numerical problem, the ME with the fewest assumptions should be used,

which at weak coupling is Eq. (18)—unless one has evidence to doubt even the Born approximation.

Moreover, if the short time dynamics are not of interest, the Born-Markov equation (22) provides

an excellent tool for many applications. Instead, the secular approximation should be used with care,

in particular for complex open quantum systems involving multiple different transition frequencies.

Its prediction compared to the exact dynamics can differ by orders of magnitude even at weak

coupling. Furthermore, the secular approximation is uncontrolled in the sense that it can destroy

physical symmetries present in the original SB Hamiltonian.

However, for analytical calculations, the reader is advised to first consider the BMS equation

because it satisfies a number of important and useful properties, which we will explore below.

Instead, these properties are not strictly satisfied by the Born-Markov equation, which makes it

hard to obtain general analytical insights from it. The hope in practice is, of course, that the

results derived for the BMS equation carry over to the Born-Markov equation, even in case the

secular approximation gives wrong numerical predictions. Luckily, for a variety of applications this

hope has turned out to be true.
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C. General properties of the Born-Markov-secular equation

We start by observing that the bath correlation functions obey a symmetry relation known as

the Kubo-Martin-Schwinger condition:

C(t) = C(−t− iβ~). (34)

From this, we can deduce that the rates from Eq. (28) obey local detailed balance:

γ(ω) = eβ~ωγ(−ω). (35)

While the derivation of Eq. (34) is straightforward, the derivation of Eq. (35) requires to assume

that the bath correlation function is analytic in the complex τ plane for =(τ) ∈ [−iβ~, 0] and

decays quickly to zero for |τ | → ±∞. This derivation is left as an exercise.

The condition of local detailed balance has a number of important implications. In fact, it is the

central physical ingredient for much work in nonequilibrium statistical mechanics. One important

implication is that a possible steady state of the BMS equation is the Gibbs state πS = e−βHS/ZS :

LBMSπS = 0. (36)

This result follows very quickly if one recalls the properties listed in Eq. (24). Furthermore, at weak

coupling this result is clearly expected based on arguments from equilibrium statistical mechanics.

It is interesting to ask whether πS is the only possible steady state. In principle, the existence of

multiple steady states is possible and closely related to the question whether there are additional

conserved quantities. We will not explore this problem in further detail here.

Next, we note that the rates γ(ω) appearing in Eq. (30) are positive (which justifies to call

them “rates”). This can be explicitly checked in the energy eigenbasis of the bath Hamiltonian

HB =
∑

k Ek|k〉〈k|:

γ(ω) =

∫ ∞
−∞

dτeiωτC(τ) =
∑
k,`

|〈k|B|`〉|2 e
−βEk

ZB

∫ ∞
−∞

dτei(ω+Ek−E`)τ ≥ 0. (37)

This result is important because it allow us to conclude that the BMS equation is completely

positive and trace preserving (CPTP). We summarize this important fact in the following

theorem:

Theorem. Suppose the dynamics is described by a ME of the form

∂

∂t
ρ(t) = L(t)ρ(t) ≡ −i[H(t), ρ(t)] +

∑
n

κn(t)

[
Jn(t)ρ(t)J†n(t)− 1

2
{J†n(t)Jn(t), ρ(t)}

]
. (38)
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Here, H(t) and Jn(t) are arbitrary time-dependent system operators with the constraint that H(t)

is Hermitian. Furthermore, κn(t) ≥ 0 are arbitrary time-dependent but positive rates. Then, the

propagator (also called the dynamical map)

E(t2, t1) ≡ exp+

[∫ t2

t1

L(t)dt

]
(39)

is CPTP for all t2 > t1.

Here, trace preserving means that trS{E(t2, t1)ρS(t1)} = trS{ρS(t1)} (which is equal to one

if ρS(t1) is properly normalized). The definition of complete positivity preserving is a bit more

subtle. Recall that any density matrix ρ is a positive operator, denoted ρ ≥ 0 and meaning that

〈ψ|ρ|ψ〉 ≥ 0 for all |ψ〉. Now, we say that the dynamics is positivity preserving if ρS ≥ 0 implies

E(t, s)ρS ≥ 0. However, for some applications this is not enough. Imagine, for instance, that the

system S is correlated with some other system labeled S′. The density matrix ρSS′ of this joint

system is defined on the tensor product Hilbert space HS ⊗HS′ . Then, we say that the dynamics

preserves complete positivity if ρSS′ ≥ 0 implies E(t, s)ρSS′ ≥ 0 for all HS′ and ρSS′ .

It is now worth to point out that the weak coupling and Born-Markov ME, Eqs. (21) and (22),

in general do not have the form of a CPTP master equation. While it is straightforward to show

that they preserve the trace, they can violate complete positivity (and even positivity) under

exceptional circumstances. If that happens, one should interpret it as a signature that the entire

weak coupling approximation is flawed. The problem of breaking positivity is cured by the secular

approximation, but the many useful properties of the BMS equation come at the cost mentioned

at the end of the previous section.

Finally, before turning to an example, we mention for completeness another property known

as Davies’ theorem, whose complicated derivation we omit here. Colloquially speaking, Davies’

theorem ensures that, if all bath correlation functions C(t) decay quickly enough for increasing t (at

least as quick as t−x with x > 2), then the BMS equation describes the exact reduced dynamics of

the system in the limit where the interaction strength VSB becomes infinitesimally small. Davies’

theorem is an important result in mathematical physics, but unfortunately its physical scope is

limited. In experimental reality there is always a finite interaction VSB, which might be small, but

it cannot be scaled down to zero.

Example. A standard example for a quantum ME describes an open cavity. The isolated cavity

Hamiltonian is HS = ωca
†a with the photon creation (annihilation) operators a† (a) obeying
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[a, a†] = 1. If the cavity is of high quality, the coupling to the outside electromagnetic field can be

regarded as a weak perturbation. In this case, the cavity ME reads

∂

∂t
ρS(t) =− i[ωc, ρS(t)] (40)

+
1 +Nth

2τc

[
aρS(t)a† − 1

2
{a†a, ρS(t)}

]
+
Nth

2τc

[
a†ρS(t)a− 1

2
{aa†, ρS(t)}

]
.

Here, Nth = (eβωc − 1)−1 is the mean thermal photon number of the outside field at frequency ωc

(Bose-Einstein distribution) and τc is the cavity lifetime, which sets the time scale of dissipation.

The reader is invited to give a physical interpretation of the terms in the square brackets, to check

that this ME obeys local detailed balance and that it is CPTP.

Moreover, readers unexperienced with MEs are asked to derive Eq. (40) explicitly (neglecting

any Lamb shift terms). To this end, start from the Hamiltonian

HSB = HS +HB + VSB = ωca
†a+

∑
k

ωkb
†
kbk +

∑
k

gk(a+ a†)(bk + b†k). (41)

Here, the index k labels all the information about the field modes of the environment (i.e., their

frequency ωk > 0, polarization, direction, etc.). The operators b†k and bk create and annihilate

a photon in mode k and they obey [bk, b
†
k′ ] = δkk′ and [a(†), b

(†)
k ] = 0. The bilinear coupling

to the system is described by the real-valued parameter gk. Show that the cavity lifetime τc

is microscopically determined by τ−1c = 4π
∑

k g
2
kδ(ωc − ωk). In view of the largeness of the

environment, which contains a continuum of modes, this expression can be also written as τ−1c =

4π
∫∞
0 dωρ(ω)g(ω)2δ(ωc−ω), where ρ(ω) is the density of field modes as a function of the frequency.

We remark that Eq. (40) describes the experimentally observed dynamics very well for a large

range of parameters provided that gk is sufficiently small. Thus, the Markov and secular approxi-

mation are well justified for a high quality cavity.

D. Nonequilibrium thermodynamics within the Born-Markov-secular approximation

In this section we derive the first and second law of thermodynamics starting from the BMS

equation without using any local or close-to-equilibrium assumption for the system. Thus, even

though the BMS equation is clearly restricted in its range of validity, the laws of thermodynamics

derived below hold arbitrarily far from equilibrium.
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Single bath case. We start by considering the BMS equation as we have derived it above for

a system weakly coupled to a single bath. Since the system Hamiltonian is time independent,

there are not many nonequilibrium features left. The only thing that can happen is that the initial

system state ρS(0) is out of equilibrium.

We consider first the first law (energy balance). Since the coupling energy VSB is by assumption

negligible and since the expectation value of a Hamiltonian is associated to its energy, it seems

quite natural to define the internal energy of the open system at time t as

US(t) ≡ trS{HSρS(t)} (42)

for any system state ρS(t). Let’s check out where this definition leads us to. A straightforward

calculation reveals for the change in internal energy that

d

dt
US(t) = trS

{
HS

∂ρS(t)

∂t

}
= trS{HSDρS(t)}, (43)

where we have used the BMS equation (33) and the fact that trS{HS [HS , ρS(t)]} = 0. It can be

easily checked (for instance by using the cavity ME as an example) that the right hand side of

the equation above is not zero in general. Clearly, this makes sense: an open quantum system is

coupled to a bath and can exchange energy with it. This energy exchange is determined by the

dissipator, which also shows up in Eq. (43). Since for a time independent Hamiltonian HSB the

global SB energy is conserved, the change in system energy must equal minus the change in bath

energy. Moreover, since the bath was assumed to be in thermal equilibrium throughout all time

scales, it seems justified to define the heat flow into the system as

Q̇(t) ≡ trS{HSDρS(t)}. (44)

The first law thus reads

d

dt
US(t) = Q̇(t). (45)

To further check whether the identification of heat makes sense, we take a look at the second

law. For a thermal bath at temperature T the infinitesimal change in bath entropy dSB is related

to the heat via TdSB = −d̄Q (remember that we use the sign convention to count heat positive if

it flows out of the bath). Again, since the coupling is assumed negligible, the second law stipulates

that the change in system and bath entropy should be positive:

Σ ≡ ∆SS(t)− βQ(t) ≥ 0. (46)
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Here, Σ is called the entropy production, SS is the system entropy and Q(t) =
∫ t
0 dsQ̇(s) is

the total (integrated) heat flux. To derive the second law, we first need to define system entropy

microscopically. We will discuss this in greater detail in Sec. III, but for now we define the system

entropy to be equal to the von Neumann entropy of ρS(t) (note that we set kB ≡ 1)

SS(t) ≡ SvN[ρS(t)] = −trS{ρS(t) ln ρS(t)} (47)

Again, this definition is supposed to be valid for all ρS(t).

Instead of proving Eq. (46), we even prove a stronger statement now, namely that the entropy

production rate is non-negative:

Σ̇(t) =
d

dt
SS(t)− Q̇(t)

T
≥ 0. (48)

Unfortunately, to derive this we have to use a non-trivial but important mathematical theorem.

Monotonicity of relative entropy. We define the quantum relative entropy between two density

matrices ρ and σ as

D(ρ|σ) ≡ tr{ρ(ln ρ− lnσ)} ≥ 0. (49)

The quantum relative entropy is non-negative (which we will not proof), measures the “statistical

distance” between the two states ρ and σ although it is not an actual distance or metric because

it is not symmetric: D(ρ|σ) 6= D(σ|ρ) in general. Moreover, the quantum relative entropy can

diverge if the support of σ is not contained in the support of ρ.

Now, consider any CPTP map E and any two states ρ and σ. Then,

D(Eρ|Eσ) ≤ D(ρ|σ), (50)

i.e., relative entropy is contractive (or monotonous) under the action of any CPTP map.

To prove Eq. (48), we first note that we can write the entropy production rate as

Σ̇(t) = − ∂

∂t
D[ρS(t)|πS ] = − lim

dt↘0

D[E(dt)ρS(t)|πS ]−D[ρS(t)|πS ]

dt
. (51)

Here, E(dt) is the dynamical map propagating the system state forward a small time step dt. Next,

we use Eq. (36), which implies E(dt)πS = πS . It then follows that

Σ̇(t) = − lim
dt↘0

D[E(dt)ρS(t)|E(dt)πS ]−D[ρS(t)|πS ]

dt
(52)
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and the non-negativity of this expression follows from Eq. (50) and the fact that E(dt) is CPTP.

Single bath with driving. If the system is driven, the HamiltonianHS(λt) is time dependent. We

will not say much about this case here because deriving MEs for driven systems is very complicated

even at weak coupling and we will present a more general thermodynamic theory (including driven

systems) in Sec. III. However, at least for very slow driving it appears justified to simply repeat

the derivation above with HS (and all derived quantities such as ω) replaced by HS(λt). This then

gives rise to a Liouvillian LBMS(λt), which satisfies

LBMS(λt)πS(λt) = LBMS(λt)
e−βHS(λt)

ZS(λt)
= 0, (53)

which is the generalization of Eq. (36).

Moreover, Eq. (43) needs to be generalized to

d

dt
US(t) = trS

{
∂HS(λt)

∂t
ρS(t)

}
+ trS{HS(λt)D(λt)ρS(t)}. (54)

Now, the second term still describes the energy exchanges with the bath, which we interpret for

the same reasons as above as the heat flow. The first term instead describes energy changes of the

system due to changing the system Hamiltonian in a prescribed way. Similar to a piston that also

changes the energy of gas molecules in a mechanically prescribed way, we will interpret this term

as work (a more detailed justification will be given in Sec. III). Thus, the first law for a driven

system coupled to a single heat bath becomes

d

dt
US(t) = Ẇ (t) + Q̇(t). (55)

The second law is still of the same form as in Eq. (48) and describes the change in entropy of the

system and the bath, whereas the change in the “work reservoir” responsible for implementing a

time-dependent Hamiltonian is idealized as zero. This makes sense because in order to implement

a time dependent protocol λt the work reservoir must be in a precisely known time dependent state

(like the piston mentioned above, whose position is known). Note that, while there is no change in

entropy in an ideal work reservoir, a work reservoir can still cause entropy changes in the driven

system. To confirm the second law, the reader is thus asked to verify that

Σ̇(t) =
d

dt
SS(t)− Q̇(t)

T
= −

[
∂

∂t

]
λt

D[ρS(t)|πS(λt)] ≥ 0, (56)

where [∂t]λ denotes a partial derivative with respect to time for fixed λ.
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Multiple baths. A very interesting nonequilibrium situation arises if an open system connects

multiple baths with different temperatures that are otherwise not directly in contact with each

other. This is the regime of quantum transport.3 If the baths are so large such that their tem-

peratures can be assumed to be constant throughout the duration of the experiment, a stationary

non-zero energy current flowing through the system arises and the system reaches a nonequilibrium

steady state (i.e., a time independent state different form the Gibbs ensemble).

Focusing for simplicity on two baths B1 and B2 only (more than two baths are indeed just a

matter of notation), we generalize the Born approximation to

ρSB1B2(t) ≈ ρS(t)⊗ e−β1HB1

ZB1

⊗ e−β2HB2

ZB2

, (57)

where β1 and β2 are fixed temperatures. Clearly, this assumption is highly idealized. Due to the

exchange of energy, the two temperatures β1 and β2 should approach each other over the course

of time and under which circumstances it is microscopically justified to neglect SB and bath-bath

correlations remains an open question. However, at least for some experiments Eq. (57) seems to

be well justified for sufficiently long times.

To derive the ME, we also need to specify a global Hamiltonian, which we take to be

HSB1B2 = HS +HB1 +HB2 + VSB1 + VSB2 . (58)

Note that we assume no direct interaction between the baths, i.e., no term VB1B2 . Under these

circumstances, the derivation of the BMS ME can indeed be straightforwardly extended by applying

it to each bath separately. The only open question is whether a “mixed term” containing the

influence of both bath 1 and 2 can arise in the derivation, i.e., a term of the form

trB1B2{ṼSB1(t)ṼSB2(s)ρSB1B2(t)}. (59)

However, the Born approximation together with the convention used to derive Eq. (15) imply that

this term always vanishes. The final BMS equation can therefore be written as

∂

∂t
ρS(t) = −i[HS , ρS(t)] +D1ρS(t) +D2ρS(t), (60)

where Dν , ν ∈ {1, 2}, contains the influence of bath ν only.

3 Of course, in quantum transport one is typically not

only interested in the transport of energy due to a

temperature gradient, but also in transport of matter

(e.g., electrons) due to a gradient in chemical potential

(a voltage bias). In this course, however, we will ex-

clude the rich physics arising from particle transport,

although many of our methods and techniques can be

directly extended to it.
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By now it shouldn’t come as a suprise that the heat flow from bath ν is defined as Q̇ν(t) ≡

trS{HSDνρS(t)} and that the first law becomes

d

dt
ρS(t) = Q̇1(t) + Q̇2(t). (61)

Moreover, the second law stipulates that

Σ̇ =
d

dt
SS(t)− β1Q̇1 − β2Q̇2 ≥ 0. (62)

To derive it, we first note that

d

dt
SS(t) = −kBtrS

{
∂ρS(t)

∂t
ln ρS(t)

}
= −kB

∑
ν

trS{DνρS(t) ln ρS(t)}. (63)

The first equality is not entirely trivial, but it can be motivated by the classical identity

dt
∑

x px(t) ln px(t) =
∑

x[dtpx(t)] ln px(t), which holds whenever the kernel of px(t), i.e., the num-

ber of x with px(t) = 0, does not change (if it does, the Shannon entropy is not differentiable).

The next point to note is that trace preservation (trS{DνρS} = 0 for any ρS) implies

− Q̇ν(t)

Tν
= kBtrS{DνρS(t) lnπS(βν)}, (64)

where πS(βν) is the Gibbs state of the system with respect to βν . Putting the last two identities

together, we recognize that

Σ̇(t) = −
∑
ν

trS{DνρS(t)[ln ρS(t)− lnπS(βν)]}. (65)

Let us now define the CPTP maps Eν ≡ eDνdt for dt small enough such that the condition

EνπS(βν) = πS(βν) is satisfied, which follows from DνπS(βν) = 0. Then, it follows that

Σ̇(t) = −
∑
ν

lim
dt↘0

D[EνρS(t)|EνπS(βν)]−D[ρS(t)|πS(βν)]

dt
. (66)

The entropy production rate is therefore expressed as a sum of positive terms, which follows again

from monotonicity of relative entropy. This concludes the derivation of the laws of thermodynamics

in presence of multiple baths. As a simple application of them, you are asked to show that they

imply that heat flows from hot to cold (known as the Clausius formulation of the second law).

Exercise. Consider the setup above at steady state, i.e., the system has reached a nonequilibrium

steady state ρness such that

− i[HS , ρness] +D1ρness +D2ρness = 0. (67)
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We denote thermodynamic quantities at steady state simply by dropping the time argument:

US(t) → US , SS(t) → SS , etc. Show that Σ̇ = (β1 − β2)Q̇2 ≥ 0, i.e., heat can only from hot to

cold.

Further reading

The presentation followed in spirit mostly my own book [1]. However, most topics discussed

above are well establlished. The derivation of the nonequilibrium thermodynamic laws for the BMS

equation dates back to the late 70ies [2–6] and other standard references about open quantum sys-

tems are for example [7–10]. Nowadays, people discuss with great enthusiasm whether one should

perform the secular approximation or not (see, e.g., Ref. [11] and references therein), although this

discussion has been around since quite some time [12, 13]. Readers interested in seeing an example,

where the inclusion of the Lamb shift term can give worse results compared to the exact solution,

can consult the appendix of a paper of mine [14]. An illuminating discussion about the (danger of

the) Born approximation for multiple baths can be found in Ref. [15].

II. ADVANCED METHODS USEFUL BEYOND WEAK COUPLING

The BMS equation is a widely used tool for good reasons. It has a universal structure (inde-

pendent of the details of the bath Hamiltonian), guarantees consistent thermodynamic laws, is in

unison with MEs used in other areas (such as stochastic thermodynamics), and gives an adequate

description for experimentally relevant platforms (e.g., high quality cavities and other quantum

optical systems or transport experiments with quantum dots in the sequential tunneling regime).

On the other hand, it seems also fair to claim that the physics and mathematics of the BMS

equation are well understood since quite some time. We also already mentioned the problem

that the secular approximation can give order-of-magnitude wrong predictions even for moderately

complex open systems. On top of that, the weak coupling approximation, the Born approximation

and the Markov approximation(s) are restrictive. In view of the many interesting platforms that

the BMS cannot adequately describe, it is time to move on and this section gives a (necessarily

very short) overview about the challenges and possible methods of solutions beyond BMS.
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A. Short-time dynamics and inadequacy of the Markov approximation

The structure of the BMS equation is ∂tρS(t) = LBMSρS(t). Since LBMS is time independent,

this equation is formally solved as ρS(t) = eLBMStρS(0). Thus, the BMS equation predicts exponen-

tial decay of any system state or observable 〈A〉(t) = trS{AρS(t)} to its final stationary value.4 So

let us consider some observable obeying the simple decay law 〈A〉(t) = e−γt〈A〉(0), where 〈A〉(0) is

the initial expectation value and γ > 0 some rate. The BMS equation predicts this to be valid for

all times, so in particular for t→ 0 we obtain a non-zero decay “speed” ∂t〈A〉(t)|t=0 = γ〈A〉(0) 6= 0.

This finite decay speed at the initial time seems suspicious. Imagine, for instance, that the

system and bath where physically decoupled for times t < 0—which is a way to justify the Born

approximation (14) at t = 0—and suppose 〈A〉(t) = constant for t < 0 (for instance, A = |εs〉〈εs|

could describe the population of some energy eigenstate εs of the system). Then, ∂t〈A〉(t) = 0

for t < 0 and ∂t〈A〉(t) = γe−γt〈A〉(0) for t ≥ 0 according to the BMS equation. Thus, at t = 0

there is a sudden jump in the derivative from zero to some finite value, i.e., the dynamics of

〈A〉(t) is not differentiable. However, this cannot be as the microscopic Heisenberg dynamics of

〈A〉(t) is differentiable. An exponential decay for all times t is thus an artifact of the Markov

approximation. In fact, this flaw is not only present in the BMS equation, but it is also shared by

the Born-Markov equation (22). We summarize:

Inadequacy of the (second) Markov approximation. A ME of the form ∂tρ(t) = Lρ(t) with

L time independent can only be true on a coarse-grained time scale. In particular, let τB be the

characteristic time of the bath over which the bath correlation function decays, i.e., C(t)/C(0) ≈ 0

for all t ≥ τB. Then, a ME with time independent generator L can only be accurate for times

t � τB. An accurate description for t . τB is provided by the master equation (21) given the SB

coupling is weak and the bath not at too low temperature.

I like to give a better and less sketchy derivation of this result by introducing the notion of a

quantum speed limit (QSL), a tool which is useful also for other considerations. Historically,

QSLs emerged from an attempt to generalize the position-momentum uncertainty relation to

energy and time. Central to the following derivation is the following mathematical result, whose

derivation can be found on Wikipedia.

4 More precisely, by diagonalizing LBMS one can see that

the decay is in general a linear combination of expo-

nentially damped oscillations with different decay rates

and oscillation frequencies.

https://en.wikipedia.org/wiki/Uncertainty_principle#Robertson%E2%80%93Schr%C3%B6dinger_uncertainty_relations
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Lemma. For any two observables A and B with standard deviations ∆A =
√
〈A2〉 − 〈A〉2 and

∆B =
√
〈B2〉 − 〈B〉2 it is true that

1

2
|〈[A,B]〉| ≤ ∆A∆B. (68)

Thus, for any observable A we obtain by virtue of Heisenberg’s equation

~
2
|∂t〈A〉| ≤ ∆H∆A. (69)

Note that ∆A = ∆At is a time dependent quantity (but ∆H not). Now, for the sake of illustration

consider a two level system with excited state |e〉. Furthermore, suppose that the system is at t = 0

in the excited state and the total SB state is ρSB(0) = |e〉〈e| ⊗ ρB with ρB arbitrary. Furthermore,

consider the observable A = |e〉〈e|, i.e., we are interested in the dynamics of the excited state

population. Then, we immediately confirm ∆At=0 = 0 such that the “time-energy uncertainty

relation” (69) implies

∂

∂t
〈A〉(t)

∣∣∣∣
t=0

= 0 (70)

in contrast to the prediction of the BMS equation. Thus, exponential decay for very short time

scales is incompatible with the fact that the dynamics of physical observables is smooth.

It is worth to investigate further consequences of Eq. (69). Let us assume and choose ρ0 =

|ψ0〉〈ψ0| = A with |ψ0〉 arbitrary. This implies 〈A〉0 = 1, A2 = A and ∆At =
√
〈A〉t − 〈A〉

2
t .

Dividing Eq. (69) by ~∆At and integrating over [0, t] gives

∆Ht

~
≥
∫ t

0
ds
|∂s〈A〉s|
2∆As

=

∣∣∣∣∣∣
∫ t

0
ds

∂s〈A〉s
2
√
〈As〉 − 〈As〉2

∣∣∣∣∣∣ . (71)

Now, we use the identity d
dt arcsin

√
ft = ḟt/[2

√
ft − f2t ], which allows us to carry out the integra-

tion in a straightforward way:

∆Ht

~
≥
∣∣∣∣arcsin

√
〈A〉t − arcsin

√
〈A〉0

∣∣∣∣ =
π

2
− arcsin

√
〈A〉t. (72)

Here, we used that arcsin(1) = π/2 and arcsin(x) ≤ π/2 for all x. Finally, we look for a time τ

where |ψτ 〉 is orthogonal to |ψ0〉. This gives 〈A〉τ = 0 implying arcsin
√
〈A〉τ = 0. Rearraning the

inequality, then yields a bound for the minimum time to reach an orthogonal state:

τ ≥ π

2

~
∆H

. (73)
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Moreover, we state here without proof another QSL of the form

τ ≥ π

2

~
〈H〉

. (74)

Note that this bound contains the average energy (counted from the lowest attainable energy Emin,

which we assume to be set to zero without loss of generality) instead of the energy variance as in

Eq. (73). Both bounds can be summarized as the following QSL

τQSL =
π

2
·max

{
~

∆H
,

~
〈H〉

}
. (75)

It gives the minimum time required to map a quantum state to some state orthogonal to it. For a

given ∆H or 〈H〉 it provides a lower bound on the microscopic evolution time scale in a quantum

system.

B. Troubles with initial SB correlations

We have introduced MEs as linear differential equations for open quantum systems (or,

more generally, for the “relevant degrees of freedom”). Linearity was important to have a

sound statistical interpretation. For instance, consider an ensemble of identical SB setups, but

assume that we prepare a fraction λ ∈ [0, 1] in the initial system state ρ
(1)
S (0) and the remaining

fraction 1 − λ in the state ρ
(2)
S (0). Since there should be no spooky interaction between different

members of the ensemble, we expect that the time evolution of the entire ensemble is given by

ρS(t) = λρ
(1)
S (t) + (1 − λ)ρ

(2)
S (t), where the time-evolution of ρ

(i)
S (t) (i ∈ {1, 2}) can be computed

independently. Unfortunately, if the system is initially correlated with the bath (more precisely,

entangled) this is no longer true. To approach this problem, we look at a very simple but

illustrating example:

Example. Consider two interacting qubits labeled S and B for system and “bath”. We denote

their joint states as |ij〉 ≡ |i〉S ⊗ |j〉B, where {|i〉S} ({|j〉B}) is an arbitrary basis of HS (HB).

Moreover, we introduce the maximally entangled states |±〉 ≡ (|00〉 + |11〉)/
√

2. Now, let the SB

interaction be modeled by the unitary USB = |+〉〈+|+|−〉〈10|+|10〉〈−|+|01〉〈01|. The evolution of

the SB composite is therefore modeled via ρ′SB = USBρSBU
†
SB, which is clearly linear with respect

to the joint input state ρSB. Next, we consider the reduced dynamics of S assuming a global initial

state ρSB = |+〉〈+|, which is entangled. It is easy to verify the following four statements:

1. The initial reduced system state is ρS = (|0〉〈0|+ |1〉〈1|)/2.
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2. The final system state is identical to the initial system state, ρ′S = trA{USB|+〉〈+|U †SB} = ρS .

3. If we first perform a measurement of the initial system in its eigenbasis, the initial system

state does not change on average: |0〉〈0|ρS |0〉〈0|+ |1〉〈1|ρS |1〉〈1| = ρS .

4. The final system state after such an initial measurement is different from ρS:

trA{USB(|0〉〈0|SρSB|0〉〈0|S + |1〉〈1|SρSB|1〉〈1|S)U †SB} =
1

4
|0〉〈0|+ 3

4
|1〉〈1|. (76)

But this creates a paradox if we assume that there is a map E : ρS 7→ ρ′S from system input states

to system output states because no map can assign two different outputs to a single input.

How can this be resolved? Clearly, from a global point of view there is no paradox. The two

initial states ρSB = |+〉〈+| and |0〉〈0|SρSB|0〉〈0|S + |1〉〈1|SρSB|1〉〈1|S = (|00〉〈00|+ |11〉〈11|)/2 are

different albeit they give rise to the same reduced system state. Hence, there can be two different

output states.

With respect to our initial ensemble construction, we have to realize that it tacitly assumed

that different initial states can be prepared without affecting other parts of the experimental

setup! But if the initial system state is entangled with the bath (or other parts of the experiment),

it is certainly no longer meaningful to speak about different initial system states independent of

the environment. But how can we deal with that problem?

Solution 1. One solution consists in carefully reading the sentence “different initial states can be

prepared” many times. From an operational (or experimental) point of view we do not mean by that

sentence that the experimentalist literally controls the initial state. Instead, the experimentalist

has control about the state preparation procedure, for instance, by deciding to switch on an electric

or magnetic field, a laser, a detector, or whatever. And it is this preparation, which we can assume

to be controllable independent of the rest of the experimental setup (unless we assume that the

brain of the experimentalist is weirdly entangled with, e.g., the heat bath of the experiment).

While this sounds like pure semantics, it makes a huge difference in the description. The initial

system state is ρS(0) is an operator acting on HS . However, an initial state preparation, let’s

call it P, acts on HS ⊗ HS and it is a superoperator that maps the system state prior to the

preparation to some new state (the “initial” state). One can now construct a linear map from

different preparations P to different final states ρS(t) even in presence of initial SB entanglement.
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To me, this sounds like the most general, meaningful and versatile resolution of the paradox.

However, a drawback of following this way is that it requires to learn some mathematical

machinery first (quantum channels, CPTP maps, supermaps, etc.), which is abstract and to a

large extend does not reveal new physical insights beyond what we already said. Therefore, I

continue with more practically oriented solutions.

Solution 2. Another possibility is to derive a ME as usual (e.g., by following the way of Sec. I B),

but without using the Born approximation. This idea can be formalized by Nakajima-Zwanzig

projection operator techniques, which show that the resulting ME has a structure of the form

∂

∂t
ρS(t) = L(t)ρS(t) +Q(t)ρSB(0). (77)

Here, Q(t)ρSB(0) is an inhomogenous term, which depends on the initial SB state and explicitly

breaks the linearity of the differential equation with respect to ρS . Various computations based on

Eq. (77) for initially correlated SB states have been reported in the literature, with the drawback

that different initial correlations require the computation of different Q(t) terms. However, for

times long compared to the bath correlation time, it usually turns out that the inhomogeneous

term becomes negligible: Q(t) ≈ 0 for t � τB. Thus, SB correlations are particularly important

for short and transient time-scales.

Solution 3. The third and last solution that we discuss here builds on the idea that SB correlations

are often caused by strong SB coupling, where “strong” only means that second order perturbation

theory in VSB becomes inadequate.5 As we discuss in greater detail in the next section, for a large

class of problems it is possible to identify the modes of the bath, which predominantly couple to

the system. Then, instead of deriving a ME for the system only (with initial SB correlations), it

becomes possible to derive an extended ME for the system and these strongly coupled bath modes,

which together (seen as a new “supersystem”) are approximately decorrelated from the remaining

modes in the bath.

5 While there can be also strong SB correlations at weak

coupling, research indicates that its influence is negligi-

ble at weak coupling, whereas this is certainly not true

at strong coupling.
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C. Caldeira-Leggett model

All what we said so far was applicable to any SB model. In actual theoretical computations

it is, however, necessary to specify the Hamiltonian HSB to compute, e.g., the bath correlation

function (19). A widely used Hamiltonian to model the dynamics of an open quantum system is

HSB = HS +
1

2

∑
k

[
p2k + ω2

k

(
xk −

ck
ω2
k

s

)2
]

= HS +
∑
k

c2k
ω2
k

s2 +
1

2

∑
k

(
p2k + ω2

kxk
)2 − s∑

k

ckxk.

(78)

Here, xk and pk are the position and momentum operator (in mass-weighted coordinates) of the

bath mode k, where k labels some appropriate quantum numbers. Moreover, ωk is the frequency

of the mode k and ck is the coupling strength between mode k and the system, which couples via

some operator s to the bath. Note that HSB ≥ 0 (if HS ≥ 0), which becomes transparent by

considering the first line of Eq. (78). This positivity requirement is imposed for stability reasons

as every physical Hamiltonian should be bounded from below. The second line of Eq. (78) then

shows that the system Hamiltonian gets “renormalized” due to the “counter term”
∑

k(ck/ωk)
2s2.

Equation (78) is known as the Caldeira-Leggett model, which is probably by far the most

often used model in open quantum system theory (excluding the possibility of electron transport,

which cannot be described by this model). It describes the bath as a set of independent harmonic

oscillators linearly coupled to the system. Taken literally, this model is certainly correct to

describe the electromagnetic field in “second quantization”, compare with Eq. (41). However,

the Caldeira-Leggett model is so popular because it has a much broader range of applicability.

To understand this it is important to emphasize that the Caldeira-Leggett model does not

assert that the bath is a set of harmonic oscillators (which it seldomly really is aside from the

mentioned electromagnetic field modes), but it asserts that the bath appears as a set of harmonic

oscillator from the perspective of the open system. This is an important difference! In fact, one

can show that every bath whose influence on the system can be captured by some (perhaps

colored and non-Markovian) quantum Gaussian noise source can be effectively modeled by a

Caldeira-Leggett model for suitable ωk and ck. Now, Gaussian noise can appear in a variety of

situations and does not require that the bath is literally described by a quadratic Hamiltonian.

For instance, if the system interacts with many parts (e.g., particles) of the bath, and if these

parts are approximately independent, then the central limit theorem suggests that the global

effect of the noise is Gaussian. In that respect, the Caldeira-Leggett model has been success-
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fully used to model a variety of situations in soft and hard condensed matter and beyond (e.g.,

a molecule in aqueous solution, an electronic level coupled to vibrations in a molecule or solid, etc.).

Bath correlation function and spectral density. It is instructive to compute the bath corre-

lation function for the Caldeira-Leggett model. With B =
∑

k ckxk we get

C(t) = trB{B(t)BπB} =
∑
k

~c2k
2ωk

[
cos(ωkt) coth

(
β~ωk

2

)
− i sin(ωkt)

]
. (79)

A priori, the number of oscillators in the bath can be arbitrary, but to model the effect of a “real

bath”, which is vastly greater than the system, one assumes a continuum of oscillator modes.

Theoretically, this idea can be encoded by introducing the spectral density

J(ω) ≡ π

2

∑
k

c2k
ωk
δ(ω − ωk). (80)

It is is assumed to be a continuous function and describes how the oscillators in the bath couple

to the system. In terms of the spectral density the bath correlation function becomes

C(t) =
~
π

∫ ∞
0

dωJ(ω)

[
cos(ωt) coth

(
β~ω

2

)
− i sin(ωt)

]
. (81)

How C(t) behaves depends strongly on J(ω). A particular important case is a spectral density of

the form J(ω) = γωΘ(ωC − ω), which is called Ohmic. Here, γ is an overall damping constant

and the Heaviside function Θ(ωC − ω) describes a cut-off, responsible for a decay of J(ω) to zero

for frequencies much larger than the cut-off frequency, ω � ωC . We note that as long as ωC is

much larger than the system frequencies and as long as we are not interested in the ultrashort

time behaviour of the system, it actually turns out that the specific choice of the cut-off function

is unimportant.

The importance of the Ohmic spectral density comes from the fact that it can justify the

Markov approximation. For this purpose, we consider the high temperature limit and expand

coth(x) = x−1 +O(x). This yields

C(t) =
2

βπ

∫ ∞
0

dω
J(ω)

ω
cos(ωt)− i~

π

∫ ∞
0

dωJ(ω) sin(ωt) +O(β~2). (82)

Using
∫∞
−∞ dω cos(ωt) = 2πδ(t), we see that C(t) ∼ δ(t) +O(~) in the limit ωC →∞. Thus, in the

classical high-temperature limit an Ohmic spectral density gives rise to a delta-peaked correlation

function, which justifies the Markov approximations. Quantum effects add corrections to that

picture and depending on the temperature of the bath these might be important to take into

account.
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Figure 1. Plot of the correlation function for the Caldeira-Leggett model for two different spectral densities

displayed in the left column. The Ohmic case J(ω) = γωΘ(ωC − ω) for γ = 1 and ωC = 10 and a peaked

case J(ω) = d2γω/[(ω2−ω2
0)2+γ2ω2] for d = 1, γ = 1/2 and ω0 = 2. The correlation functions are displayed

for a high temperature case T = 10 (thin, red lines) and a low temperature case T = 1 (blue, dashed, thick

lines). We set kB = 1 and ~ = 1.

Examples for the evolution of the bath correlation function for the Caldeira-Leggett model are

shown in Fig. 1. As a rule of thumb, we keep in mind that the higher the temperature of the bath

and the less structured the spectral density (compared to the Ohmic case), the more justified is

the Markov approximation.

D. Reaction coordinate mapping

We now introduce a method to deal in particular with non-Markovian effects, but the method

also allows to address certain strong coupling problems and it provides a way to simulate the

dynamics at very short time scales without approximation. The basic idea is to redefine the SB

partition such that a newly defined “supersystem”, composed out of the system itself and selected

modes of the bath, couples (ideally weakly) to a Markovian residual bath. This then allows to

apply conventional ME methods from Sec. I B again, but to a redefined enlarged system instead of

the orginal one.

We start our treatment by considering a sketch of the Caldeira-Leggett model in Fig. 2, which
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Figure 2. Sketch of Eq. (78).

displays a system S simultaneously coupled to a set of uncoupled harmonic oscillators described

by some spectral density J0(ω) (we’ve now added a subscript ‘0’ for later clarity).

On the other hand, the coupling term VSB actually shows that the system couples via the

operator s to only one collective coordinate

λ0X1 =
∑
k

ckxk, (83)

which we label X1 and call reaction coordinate in the following. Moreover, the real-valued

parameter λ0 is fixed by demanding that X1 and its conjugate momentum P1 =
∑

k ckpk/λ0

satisfy the usual commutation relation:

[X1, P1] = λ−20

∑
k,`

ckc`[xk, p`] = iλ−20

∑
k

c2k
!

= i ⇔ λ20 =
∑
k

c2k. (84)

At a more formal level, we can say that we perform a normal mode transformation of the form

X = Λx, P = Λp, (85)

where the vector x = (x1, . . . , xk, . . . , xN )T denotes the collection of N (having the limit N →∞ in

mind) original bath coordinates (and similarly for p, X and P). To ensure [Xk, P`] = iδkl, theN×N

matrix Λ needs to be orthogonal, i.e., Λ−1 = ΛT . The orthogonality condition ΛΛT = 1 implies

N(N + 1)/2 equations, which means that Λ has N(N − 1)/2 independent components. These are

fixed by the requirement that the collection of residual bath oscillators (i.e., all oscillators except

the RC itself) is of normal form, i.e.,∑
k

ω2
kΛ`kΛmk = δ`mΩ2

` (k 6= 1 ∧ ` 6= 1). (86)

This allows us to map the original Hamiltonian (78) to

H ′ = HS +
δΩ2

0

2
s2 − λ0sX1 +

1

2

(
P 2
1 + Ω2

1X
2
1

)
−X1

∑
k 6=1

CkXk +
1

2

∑
k 6=1

(
P 2
k + Ω2

kX
2
k

)
. (87)
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Figure 3. Sketch of Eq. (87).

Here, we used Λ1k = λ−10 ck and we defined Ω2
1 ≡

∑
k ω

2
kΛ

2
1k, Ck ≡ −

∑
l ω

2
l ΛklΛk1 and δΩ2

0 ≡∑
k(ck/ωk)

2.

A pictorial representation of the mapped Hamiltonian is provided in Fig. 3. Now, the system

couples only to a single oscillator (the reaction coordinate RC), but the RC in turn is coupled to

(N − 1) residual modes with coupling coefficients Ck and frequencies Ωk. Note that all what we

have done so far was a formally exact normal mode transformation. No approximation has been

used so far.

In practice, we are interested in a continuum of modes. Interestingly, in turns out that the

entire mapping is completely characterized in terms of the spectral density J0(ω) of the original

model. First, it easily follows from what we found out so far that

δΩ2
0 =

2

π

∫ ∞
0

dω
J0(ω)

ω
, λ20 =

2

π

∫ ∞
0

dωωJ0(ω), Ω2
1 =

2

πλ20

∫ ∞
0

dωω3J0(ω). (88)

More importantly, however, we need to know the spectral density of the residual bath:

J1(ω) ≡ π

2

∑
k

C2
k

Ωk
δ(ω − Ωk). (89)

It is determined as (derivation given below)

J1(ω) =
λ20J0(ω)

|W+
0 (ω)|2

, W0(z) ≡
1

π

∫ ∞
−∞

dω
J0(ω)

ω − z
, W+

0 (ω) ≡ lim
ε↘0

W0(ω + iε) (ω ∈ R). (90)

Note that we here extended the spectral density to negative frequencies via J(−ω) = −J(ω) and

that W0(z) is also known as the “Cauchy transform”. Furthermore, one can show that

λ20
δΩ2

0

= Ω2
1 − δΩ2

1, (91)

where δΩ2
1 =

∑
k(Ck/Ωk)

2 = (2/π)
∫∞
0 dωJ1(ω)/ω denotes the frequency renormalization of the
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RC. This allows us to rewrite the Hamiltonian (87) in the form

H ′ = HS +
1

2

[
P 2
1 +

λ20
δΩ2

0

(
X1 −

δΩ2
0

λ0
s

)2
]

+
1

2

∑
k

[
P 2
k + Ω2

k

(
Xk −

Ck
Ω2
k

X1

)2
]
, (92)

which makes its thermodynamic stability evident. Hence, the physical frequency of the RC is not

given by Ω1 but by the square-root of Eq. (91).

Derivation. We first note that the system was completely arbitrary in our considerations above

(as the normal mode transformation Λ only acts on the bath Hilbert space). Hence, we will choose

for now as the system a particle with position q and momentum p moving in a potential V (q) and

coupled via the operator s = q to the bath. Heisenberg’s equation of motion according to the

original Hamiltonian (78) then take on the form

q̈ = −∂V
∂q

+
∑
k

ckxk −
∑
k

c2k
ω2
k

q, (93)

ẍk = −ω2
kxk + ckq. (94)

After Fourier transformation according to the definition

f̂(z) ≡
∫ ∞
−∞

dteiztf(t) (=(z) > 0), (95)

we obtain

−z2q̂ = − ∂̂V
∂q

+
∑
k

ckx̂k −
∑
k

c2k
ω2
k

q̂, (96)

−z2x̂k = −ω2
kx̂k + ckq̂. (97)

Eliminating x̂k we can write

− ∂̂V

∂q
= L̂0(z)q̂. (98)

with the Fourier space propagator

L̂0(z) = −z2 −
∑
k

c2k
ω2
k − z2

+
∑
k

c2k
ω2
k

≡ −z2 −W0(z) + δΩ2
0. (99)

Here, we have introduced the Cauchy transform of J0(ω):

W0(z) ≡
2

π

∫ ∞
0

dω
ωJ0(ω)

ω2 − z2
=

1

π

∫ ∞
−∞

dω
J0(ω)

ω − z
(100)

where we used J0(−ω) = −J0(ω). Upon using the identity

δ(ω′ − ω) = lim
ε↘0

1

π

ε

(ω′ − ω)2 + ε2
, (101)
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we can confirm that J0(ω) = =[W+
0 (ω)] = limε↘0=[W0(ω + iε)].

For the next step we look at the transformed Hamiltonian (87) to derive

q̈ = −∂V
∂q

+ λ0X1 − δΩ2
0q, (102)

Ẍ1 = −Ω2
1X1 + λ0q +

∑
k

CkXk, (103)

Ẍk = −Ω2
kXk + CkX1 (k 6= 1). (104)

Playing the same game as above we can deduce that the Fourier space propagator for the system

coordinate is

L̂0(z) = −z2 − λ20
Ω2
1 − z2 −W1(z)

+ δΩ2
0 (105)

which must be the same as Eq. (99). Furthermore, W1(z) is defined analogously to Eq. (100) with

J0(ω) replaced by J1(ω). Then, by comparison with Eq. (99) we see that

W0(z) =
λ20

Ω2
1 − z2 −W1(z)

⇔ W1(z) = Ω2
1 − z2 −

λ20
W0(z)

. (106)

From the second relation we can immediately deduce the Eq. (90). Furthermore, by noting that

Wi(0) = δΩ2
i (i = 0, 1) we can also verify Eq. (91).

Example. After all that abstract work it is worth to consider an example modeled by the following

spectral density (which was also considered in the second row of Fig. 1):

J0(ω) =
d2γω

(ω2 − ω2
0)2 + γ2ω2

Θ(ωR − ω). (107)

We are especially interested in the regime of a large cutoff frequency ωR � 1 because this allows

by virtue of the residue theorem to evaluate J1(ω) exactly. Note that the residue theorem requires

J0(ω) to be analytic (except for isolated poles), which is - strictly speaking - never the case for

a hard cutoff. However, the discrepancy with the true solution vanishs for ωR → ∞. Then, for

4ω2
0 > γ2, it follows that

J1(ω) = γωΘ(ωR − ω). (108)

Furthermore, we also have

λ0 = d, δΩ0 =
d

ω0
,

λ0
δΩ0

= ω0. (109)
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Figure 4. Iterative application of the RC mapping allows to extract a chain of oscillators from the bath.

Thus, and quite intuitively, the system couples with coupling strength d to the RC with physical

frequency ω0, which coincides with the position of the peak of J0(ω). Moreover, the spectral density

of the residual bath is Ohmic (i.e., “Markovian”) and it couples to the RC with strength γ.

This strongly suggests to use a ME approach applied to the system and RC (the “supersystem”),

which we call the reaction coordinate master equation (RCME). It will give an accurate

prediction of the dynamics for high bath temperatures or for small γ. Even beyond that strict

regime of validity it seems justified to hope that the RCME gives more accurate predictions than a

ME applied to the original system only. Moreover, when deriving the RCME for the supersystem,

we are free to choose any initial state ρS+RC for the system and reaction coordinate, including

correlated and entangled states. Thus, even if the original coupling strength d was weak (allowing a

perturbative treatment of VSB), it can be beneficial to use the RCME in presence of SB correlations.

Finally, it is worth to point out that the nonequilibrium thermodynamic framework developed

in Sec. I D can be applied to the redefined “supersystem/residual bath partition”. In fact,

currently there is no consensus on what is the correct nonequilibrium thermodynamic framework

in presence of strong SB coupling, which is related to the fact that it becomes hard to meaningfully

speak of a SB partition in presence of strong coupling. The RC method elegantly circumvents

this problem by redefining the SB partition and it has been applied to a variety of problems in

quantum thermodynamics.

Iterative RC mapping. Some readers might have recognized that the transformed Hamilto-

nian (92) has the same structure as the Hamiltonian (78). Thus, we could apply the RC mapping

again to the residual bath. This then allows to extract a chain of RCs as sketched in Fig. 4. If the

bath contains N oscillators and the mapping is applied N times, then this transforms the entire

bath to a single chain. Two observations are important now:
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1. One can show that the sequence of spectral densities Jn(ω) of the residual bath after the

nth mapping converge to an Ohmic spectral density. More specifically, they converge to

lim
n→∞

Jn(ω) =
ωωC

2

√
1− ω2

ω2
C

Θ(ω − ωC) (110)

provided the initial spectral density J0(ω) had no gaps and a hard cutoff at ωC . Thus, for

almost all initial spectral densities iterative application of the RC mapping allows to reduce

the non-Markovian open quantum system dynamics to a Markovian problem. This result

is also very appealing from a mathematical point of view because one can show that every

non-Markovian process can be generated by a “hidden” Markov process in a larger space.

2. If one is interested in the open system dynamics only for finite times (no interest in the steady

state behaviour), one can also truncate the chain after n mappings and directly solve the

Schrödinger equation for a system coupled to n harmonic oscillators (without any residual

bath). Using matrix product states and other theoretical techniques, this has become indeed

feasible for quite large n. How large n can be depends, however, on the temperature: a

very low temperature allows to effectively truncate the oscillator Hilbert space to a few

level system and a very high temperature allows to use semi-classical methods. In between,

of course, the simulation becomes cumbersome. Finally, if one is only interested in very

short times, a small number of n is sufficient. How small n has to be can be computed

by estimating the time an excitation needs to travel from the system to the end of the

chain and back because at that time finite-size effects become visible. This time is inversely

proportional to the Lieb-Robinson velocity.

Further reading

Quantum speed limits have many interesting consequences and applications as reviewed in

Ref. [16]. The energy-time uncertainty relation (69) and the QSL (73) were first derived by Man-

delstam and Tamm in 1945 [17], whereas the QSL in Eq. (74) is more recent [18]. In Sec. II B we

discussed various ways out of the dilemma of initial SB correlations. Readers interested in “Solu-

tion 1” can find more material here [19–21]. I am not an expert concerning “Solution 2”, but a

reference dealing with that problem is [22]. Some discussion about the influence of SB correlations

at weak coupling, in particular in dependence of the bath state, can be found in some recent work

of my collaborators and me [23, 24]. The Caldeira-Leggett model is discussed in greater detail, e.g.,
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in the books [25, 26]. The reaction coordinate mapping was first applied from an inverse perspec-

tive in Ref. [27]. The reaction coordinate master equation has been first used in Refs. [28, 29]. Its

potential to build a consistent nonequilibrium thermodynamic framework for strongly coupled and

non-Markovian systems was discussed in Refs. [14, 30–32] (there is also a review available [33]).

The form of the limiting SD, Eq. (110) was found in Ref. [34]. Readers interested in the idea

to use an iterative chain mapping for the exact simulation of open quantum systems should read

Refs. [35, 36]. An exhaustive mathematical discussion of the chain mapping is given in Ref. [37] and

the maximum simulation time in relation to Lieb-Robinson velocities was investigated in Ref. [38].

Finally, note that the RC mapping can be also applied to fermionic environments [14, 37].

III. THERMODYNAMIC FRAMEWORK FOR ARBITRARY OPEN QUANTUM

SYSTEMS

We now return to the laws of thermodynamics. We will present a microscopic derivation that

is, quite remarkably, only based on a relatively mild assumption about the initial SB state, but

otherwise no other assumptions will be invoked.

A. Short review of phenomenological nonequilibrium thermodynamics

Let us start by making sure that we know what we actually want to derive. Thermodynamics

is an independent physical theory, which arose out of the desire to understand transformations of

matter in chemistry and engineering in the 19th century and whose principles have been applied

with an enormous success over a wide range of length, time and energy scales. The systems under

investigation were macroscopic and described by very few variables (temperature T , pressure p,

volume V , etc.). These macroscopic systems could exchange heat Q with their surroundings and

mechanical work W could be supplied to them. A standard example of a thermodynamic setup

partitioned into a system, a heat bath and a work reservoir is shown in Fig. 5.

The theory is based on two central axioms, which are called the first and second law of ther-

modynamics and whose derivation is the main focus of this last part. The first law states that the

change ∆US in internal energy of the system is balanced by heat Q and mechanical work W :

∆US = Q+W. (111)

The first law is a consequence of conservation of energy applied to the system, the heat bath and

the work reservoir. However, the fundamental distinction between heat and work becomes only
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Figure 5. A prototypical thermodynamic setup.

transparent by considering the second law because the exchange of heat is accompanied with an

exchange of entropy.

The second law, in its most general form, states that “the entropy of the universe tends to a

maximum” (Clausius 1865). In equations, for any physical process

∆Suniv ≥ 0, (112)

where Suniv denotes the thermodynamic entropy of the universe, which should be distinguished from

any information theoretic notion of entropy at this point. Note that the terminology “universe”

does not necessarily refer to the entire universe in the cosmological sense, but to any system which

is sufficiently isolated from the rest of the world such as, e.g., the system and the bath within

the context of open quantum systems or a gas of ultracold atoms. The change in entropy of the

universe is often called the entropy production and denoted by Σ = ∆Suniv. If Σ = 0, the process

is called reversible, otherwise irreversible.

Focusing on the SB setup, e.g., as sketched in Fig. 5, we split the entropy of the universe

additively into a system and an environment part: Suniv = SS +Senv. This is an assumption, which

is justified whenever surface effects are negligible compared to bulk properties. This is often (but

not always) the case for macroscopic systems. Then, the second law becomes

Σ = ∆SS + ∆Senv ≥ 0. (113)

Furthermore, the environment is often assumed to be well-described by an equilibrium state with

temperature T such that its change in entropy is ∆Senv = −
∫
d̄Q/T . Note that under the integral

T can (and often will) change during the process. Here, d̄Q denotes an infinitesimal heat flow into

the system. Then, the second law reads

Σ = ∆SS −
∫
d̄Q

T
≥ 0. (114)

which was introduced by Clausius in 1865, who called Σ uncompensated transformations (“un-

kompensierte Verwandlungen”). In fact, the word “entropy” was chosen by Clausius based on the
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ancient greek word for “transformation” (τροπή). Equation (114) is often referred to as Clausius’

inequality. Finally, if the bath gets only slightly perturbed away from its initial temperature, here

denoted by T0, then Eq. (114) reduces to

Σ = ∆SS −
Q

T0
≥ 0 (115)

with Q =
∫
d̄Q the total flow of heat from the bath.

Note that these basic building blocks of phenomenological nonequilibrium thermodynamics can

be further extended to, e.g., multiple heat baths or particle transport. These (straightforward)

extensions are detailed in the literature and not discussed here.

B. Microscopic definitions of internal energy, work, heat, entropy and temperature

Our goal is to derive the aforementioned first and second law microscopically with the fewest

assumptions possible. Obviously, since microphysics has time-reversal symmetry, there cannot

be any purely mechanical derivation of the (time-asymmetric) second law. Thus, at some point

some time-asymmetric assumption must “sneak” in, usually in form of an atypical (low entropy)

initial state. Remarkably, however, apart from an initial state assumption, we will need no other

assumption and present a derivation valid arbitrary far from equilibrium. For that purpose we

first of all introduce microscopic definitions of thermodynamic quantities applicable arbitrary far

from equilibrium. That these definitions are meaningful will be revealed a posteriori after we

succeeded to derive the phenomenological laws of thermodynamics in the next section.

Internal energy (of an isolated system). Let us consider an isolated system with a time-

dependent Hamiltonian H(λt) in a state ρ(t). Its internal energy is identified with

U(t) ≡ tr{H(λt)ρ(t)} (116)

and this definition seems so natural that (according to my knowledge) nobody ever attempted a

different definition.

Mechanical work. In an undriven system (λ̇t = 0) internal energy is conserved: ∆U(t) =

U(t) − U(0) = 0 (as usual, we take the initial time to be t = 0). In a driven system the internal

energy can change: ∆U(t) = tr{H(λt)ρ(t)} − tr{H(λ0)ρ(0)} 6= 0. Since the system is isolated

(i.e., only coupled to a work reservoir), no heat is flowing (Q = 0) and the phenomenological first
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law (111) forces us to identify the change in internal energy with the work supplied to the system:

W (t) ≡ ∆U(t). (117)

A quick calculation reveals that the work can be expressed as

W (t) =

∫ t

0
ds

d

ds
tr{H(λs)ρ(s)} =

∫ t

0
dstr

{
∂H(λs)

∂s
ρ(s)

}
=

∫ t

0
dsẆ (s) (118)

with the instantaneously supplied power Ẇ (s). Note that the identification of mechanical work

solely follows from the phenomenological first law and the assumption (116).

Heat (and internal energy in open systems). We now split the isolated “system” into a

system and bath part and consider the Hamiltonian H = HS(λt) + HB + VSB. Note that we

only assume the system Hamiltonian to be time-dependent, which is often the case in practice,

but including a time-dependence in VSB poses no formal problem (in contrast to including a time-

dependence in HB). The goal is to propose a meaningful definition of heat, which via the first

law (111) ∆US = Q + W fixes the definition of internal energy for the system because we have

already defined W (or, vice versa, the definition of US fixes the definition of Q). Unfortunately,

we now reach the first point where things become debatable and there seems to be no universally

agreed on consensus about the definition of US and Q for arbitrary couplings VSB. However, within

the class of initial states that we consider later, only the following definition of heat works:

−Q(t) ≡ trB{HBρB(t)} − trB{HBρB(0)}. (119)

Thus, heat is identified with (minus) the change in bath energy. This implies that the internal

energy of the system is defined as

US(t) ≡ trSB{[HS(λt) + VSB]ρSB(t)} (120)

and thus includes the entire SB interaction. This poses a problem because US(t) is no longer

computable (or measurable) based on knowledge of ρS(t) only.6

Finally, due to the fact that only the system Hamiltonian is time-dependent, we note that the

definition of work simplifies to

W (t) =

∫ t

0
dstrS

{
∂HS(λs)

∂s
ρS(s)

}
. (121)

6 Some people might also mourn the asymmetric split-

ting of VSB between the system and the bath, but I do

not think that this is a legitimate argument because the

spirit of SB theories is in general to treat the system

very differently from the bath.
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Thus, at least computing the work requires to only know the open system density matrix.

Temperature. How to define temperature out of equilibrium is another point that is still debated

(though somewhat suprisingly it seems to receive less attention in the literature). The problem is

that many formally different definitions of temperature all coincide (up to negligible corrections)

for large systems at equillibrium. I personally believe that out of equilibrium multiple definitions

of temperature are useful to describe different forms of (non-)thermality. Here, the following choice

turns out to be useful, which we introduce for an isolated system first.

Let ρ(t) be an arbitrary nonequilibrium state at time t. Then, we define the inverse nonequi-

librium temperature β∗t indirectly by demanding that the following equality holds:

tr{Hρ(t)} ≡ tr{Hπ(β∗t )}. (122)

Thus, we ask: which inverse temperature does a fictitious Gibbs state π(β∗t ) need to have such

that its internal energy matches the true internal energy. Note that this does not imply that the

system state itself must be Gibbsian.

An alternative way to describe the meaning of the nonequilibrium temperature T ∗t = 1/β∗t is

as follows. Suppose that we have a collection of superbaths at our disposal prepared at different

equilibrium temperatures T . Here, by definition a superbath at temperature T thermalizes every

system put in contact with it to temperature T (in the long run). Then, T ∗t is defined to be the

temperature T of a superbath, which causes no net heat exchange when coupling the system to it.

Another property of β∗t follows by recalling that the canonical ensemble π(β) with internal

energy U(β) = tr{Hπ(β)} satisfies

dU(β) = −C(β)

β2
dβ, (123)

where C(β) = β2[tr{H2π(β)}− tr{Hπ(β)}2] ≥ 0 denotes the non-negative heat capacity. Thus, by

definition of the effective inverse temperature we can conclude that β∗ = β∗(U) is monotonically

decreasing as a function of the internal energy U , stretching from β∗ = ∞ if the system is in its

ground state to β∗ = −∞ if the system is in its highest excited state (assuming the Hamiltonian is

bounded from above, otherwise β∗ remains positive). Furthermore, Eq. (123) also provides a way

to compute the nonequilibrium temperature given one knows the heat capacity.

Finally, we note for later purposes a useful connection to the canonical entropy S(β) =

SvN[π(β)], which is the von Neumann entropy of a Gibbs state:

dS(β) = βdU(β). (124)
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This equation is, of course, well known from comparing the von Neumann entropy of a Gibbs

state with a slight perturbation of it. Here, however, this relation remains true for two arbitrary

nonequilibrium states ρ(t) and ρ(t+ dt) when defining β according to Eq. (122).

Entropy. We now come to the long-debated problem of how to define thermodynamic (and not

information-theoretic) entropy out of equilibrium for an isolated system. Unfortunately, the entropy

debate is governed by many unnecessary mystifications. I claim that the definition given below

would have been accepted (and, in fact, was partially directly suggested) by Boltzmann, Gibbs,

von Neumann, Wigner, van Kampen, Jaynes, among others.

Let us approach the problem slowly. First of all, we already introduced the von Neu-

mann entropy, which, of course, is used with big success in information theory. However, von

Neumann entropy has the property that it is invariant under any unitary transformation U :

SvN(ρ) = SvN(UρU †) for all ρ. Consequently, if we were to interpret von Neumann entropy as

thermodynamic entropy, then we need to conclude that the thermodynamic entropy of every iso-

lated system is always constant. But this conflicts with empirical facts, which show that most

spontaneous processes are accompanied with a strict increase in thermodynamic entropy (e.g., the

free expansion of a gas, the mixing of liquids or the evolution of the cosmological universe).

Another common candidate is Boltzmann entropy, which in some sense behaves oppositely to

von Neumann entropy. It relies on a partition X of phase (or Hilbert) space H =
⊕

xHx into

non-overlapping regions with volumes Vx. Quantum mechanically this can be precisely defined

by a complete set of projectors {Πx}, satisfying
∑

x Πx = 1 (1 = identity) and ΠxΠy = δx,yΠx.

Each projector Πx defines a subspace Hx with associated “volume” (= subspace dimension) Vx =

tr{Πx} = dimHx. Then, if the system is found in the macrostate x, its Boltzmann entropy is

SB(x) ≡ lnVx. (125)

Boltzmann entropy has three properties, which make it an appealing candidate for thermodynamic

entropy in contrast to von Neumann entropy:

• Due to the partition X it makes the essential role of coarse-graining or of incomplete infor-

mation transparent. For any realistic measurement of a many-body system one has Vx � 1.

• It does not require the introduction of ensembles. Let |ψx〉 ∈ Hx be an arbitrary pure

state confined to the subspace Hx. Then, this state has in general a non-zero Boltz-

mann entropy (125) (unless Vx = 1) in contrast to the von Neumann entropy for which

SvN(|ψ〉〈ψ|) = 0 for all pure states |ψ〉.
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Figure 6. Partition of phase space into different macrostates. For normal thermodynamic variables, there

is one subspace, called the equilibrium subspace, which dominates by far the size of all other subspaces.

Picture copied from Ref. [39].

• It naturally explains the second law because it is much more probable to evolve from a region

of small volume towards a region of large volume and to reside for long times in the region

with the largest volume, which is identified with thermodynamic equilibrium, see also Fig. 6.

Unfortunately, also Boltzmann’s entropy concept faces difficulties. For instance, how should one

define Boltzmann entropy for a superposition of the form |ψx〉+ |ψy〉 with x 6= y or even a classical

mixture of different macrostates? Furthermore, in Sec. I D we found already that von Neumann

entropy for the open system seems to work well as thermodynamic entropy. Thus, from today’s

perspective with its increased nanotechnological abilities, Boltzmann’s entropy appears too coarse,

whereas von Neumann entropy appears too fine in general. Is there a possibility in between?

The answer is yes, and we will call it observational entropy. It is based on a slight gener-

alization of Boltzmann entropy by taking into account the probabilities px = tr{Πxρ} to obtain

outcome x given an arbitrary (and in general unknown) microstate ρ of the isolated quantum

system. Then, observational entropy is defined as

SX(ρ) ≡
∑
x

px[− ln px + SB(x)]. (126)

Thus, observational entropy equals the average Boltzmann entropy plus the Shannon entropy

associated with the set of measurement outcomes {px}. It thus interpolates between Shannon or

von Neumann entropy and Boltzmann entropy. Although observational entropy does not depend

on all the details of ρ (but only on px), it is nevertheless useful to write SX(ρ) for later purposes.

To see how this interpolation works, it is interesting to consider the role of the partition or

coarse-graining X in more detail. X certainly has a “subjective” or epistemological element as it
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is supposed to capture the measurement capabilities of an experimenter. Consider, for instance,

the extreme case in which the experimenter has complete control over every microscopic degree of

freedom. Furthermore, let ρ =
∑

x px|x〉〈x| be the microstate of the system. Then, in view of the

unlimited control of the experimenter, they could choose to use the fine partition X = {|x〉〈x|},

which coincides with the eigenbasis of ρ. Then,

SX(ρ) = SvN(ρ), (127)

i.e., observational entropy reduces to von Neumann entropy for an omnipotent experimenter. How-

ever, in reality human agents are not omnipotent and every measurement of a many-body system

involves uncertainties. This basic idea was already captured by Boltzmann entropy, but it becomes

even more transparent and explicit in observational entropy because one can show that

SX(ρ) = max
%

{
SvN(%)

∣∣px = tr{Πx%} fixed
}

= SvN

(∑
x

px
Πx

Vx

)
, (128)

i.e., observational entropy maximizes von Neumann entropy given the measurement results. It

is thus compatible with the maximum entropy principle, but does not require to introduce any

ensembles.

(Quantum) relative entropy. We can reveal further interesting properties of observational

entropy if we introduce the notion of relative entropy. Classically, relative entropy is defined for

two probability distributions qx and px as

D(p‖q) ≡
∑
x

px(ln px − ln qx). (129)

Roughly speaking, relative entropy measures the “distance” between two probability distributions

although it does not define a metric on the space of probability distributions: it is neither symmetric

nor does it satisfy a triangle inequality. However, using lnx ≤ x− 1 for all x ≥ 0, we confirm that

relative entropy is non-negative:

D(p‖q) = −
∑
x

px ln
qx
px
≥ −

∑
x

px

(
qx
px
− 1

)
= −

∑
x

(qx − px) = −1 + 1 = 0. (130)

Equality holds if and only if p = q. By analogy, we can introduce the quantum relative entropy

between two density matrices ρ and σ:

D(ρ‖σ) = tr{ρ(ln ρ− lnσ)} ≥ 0. (131)
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Similarly to the classical case, it is non-negative (which we will not show here) but neither sym-

metric nor does it satisfy the triangle inequality. Again, D(ρ‖σ) is a measure of how statistically

similar the two states are.

Returning to observational entropy, it is easy to confirm that it can be written as

SX(ρ) = lnD −D(p‖π). (132)

Here, D =
∑

x Vx = dimH and πx ≡ Vx/D. Observe that πx is the probability to measure x as

expected from equilibrium statistical mechanics. Thus, observational entropy measures how far

the true distribution is away from equilibrium. Moreover, using Eq. (128), we find

SX(ρ)− SvN(ρ) = D

(
ρ

∥∥∥∥∥∑
x

ΠxρΠx

)
+
∑
x

pxD

(
ΠxρΠx

px

∥∥∥∥ Πx

Vx

)
. (133)

Thus, from the last two equations and the non-negativity of relative entropy, we obtain the bounds

lnD ≥ SX(ρ) ≥ SvN(ρ) ≥ 0. (134)

C. Derivation of the second law and Clausius’ inequality

Before we turn to the open quantum system paradigm, it is useful to give a general criterion

about when observational entropy provably increases in isolated quantum systems.

Increase in observational entropy. Consider an isolated system with a (possibly time-

dependent) Hamiltonian H(λt) and a (possibly time-dependent) coarse-graining Xt = {Πxt}. Let

the initial state be of the form ρ(0) =
∑

x0
px0(0)Πx0/Vx0 for an arbitrary set of probabilities

{px0(0)}. Then,

∆SX = SXt [ρ(t)]− SX0 [ρ(0)] ≥ 0. (135)

Proof. Thanks to our preliminary work in the previous section the proof becomes straightforward.

First, Eq. (128) shows that SX0(0) = SvN[ρ(0)]. Second, by conservation of von Neumann entropy

we know that SvN[ρ(0)] = SvN[ρ(t)]. Finally, we use Eq. (133) for the final time t.

Let us now consider the open system paradigm. What would constitute a sensible coarse-

graining in this case? The spirit of all what we have done so far was to assume that the open

quantum system is small and that we have complete control about it, whereas the bath was large

and characterized by having only very limited control (or knowledge) about it. Note that, despite
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the fact that we traced out the bath completely, we never assumed to have no knowledge about

the bath. Instead, within the Born approximation, and also within other open quantum system

theory approaches, one typically assumes that one knows at least the temperature of the bath or,

equivalently, one roughly knows its energy. These insights can be combined into the coarse-graining

Xt = {|st〉〈st| ⊗ ΠB
E}, where |st〉 is an arbitrary basis of the system Hilbert space HS , reflecting

the experimenter’s precise control about it, whereas ΠB
E are coarse energy projectors with respect

to the bath Hamiltonian.

More precisely, if HB =
∑

k Ek|k〉〈k| is the spectral decomposition of the bath Hamiltonian, we

can define

ΠB
E =

∑
k

χ[E−δ/2,E+δ)(Ek)|k〉〈k|, (136)

where χI(x) is the indicator function for some interval I with χI(x) = 1 if x ∈ I and χI(x) = 0

otherwise. Thus, ΠB
E projects on all energies Ek in the energy range [E − δ/2, E + δ) with δ some

small measurement uncertainty. How small should δ be? Theoretically, it is a free parameter and

at the end the value of δ would be determined experimentally. However, a reasonable choice of δ

is given by demanding that

SBE [πB(β)] ≈ S(β) = SvN[πB(β)], (137)

i.e., the observational entropy with respect to a measurement of the bath energy should (approxi-

mately) coincide with the canonical entropy if the state of the bath is thermal.

Let us now consider an initial SB state of the form

ρSB(0) =
∑
s0,E

p0(s0, E)|s0〉〈s0| ⊗ΠB
E/V

B
E (138)

with V B
E = tr{ΠB

E}. Note that this initial state is much more general than the state (14) we

conventionally considered within the Born approximation. It includes, for instance, a large class

of (classically) correlated SB states and allows non-thermal initial states for the bath. Then, with

respect to the coarse-graining defined above we obtain immediately from Eq. (135) the second law

SXt [ρSB(t)]− SX0 [ρSB(0)] ≥ 0, (139)

which constitutes the microscopic counterpart of Eq. (112).

Next, note that the coarse-graining Xt is of “product form”, which allows to split observational
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entropy as

SXt [ρSB(t)] = −
∑
st

pt(st) ln pt(st) +
∑
E

pt(E)[− ln pt(E) + lnV B
E ]−

∑
st,E

pt(st, E) ln
pt(st, E)

pt(st)pt(E)

= SvN[ρS(t)] + SBE [ρB(t)]− ISt:EB (t). (140)

Here, we assumed for simplicity that |st〉 coincides with the eigenbasis of ρS(t) such that the

(reduced) observational entropy of the system coincides with the von Neumann entropy of the

system. Moreover, ISt:EB (t) is a classical mutual information, which quantifies the correlations

between system states and bath energies. It is non-negative, which can be confirmed by rewriting

ISt:EB (t) = D[pt(st, E)‖pt(st)pt(E)] ≥ 0. (141)

Using this decomposition, we can rewrite Eq. (139) as

∆SS(t) + ∆SB(t) ≡ SvN[ρS(t)]− SvN[ρS(0)] + SBE [ρB(t)]− SBE [ρB(0)]

≥ ISt:EB (t)− IS0:EB (0).
(142)

We now come to the question whether it is justified to neglect SB correlations or “surface effects”

using a thermodynamic jargon. In general, this is not the case, but since this is model specific

we like to avoid to get tangled up in difficult case studies. Therefore, let us assume that ∆I(t) ≡

ISt:EB (t)− IS0:EB (0) & 0, which is justified at least in the following cases:

• If the initial SB state is decorrelated (as assumed within the Born approximation and many

other approaches to open quantum system theory), then IS0:EB (0) = 0 and ∆I(t) ≥ 0 follows

immediately.

• If the initial SB state is correlated, we cannot draw a definite conclusion about ∆I(t), but it

seems plausible to conjecture that many SB dynamics have approximately equal correlations

for early and late times such that ∆I(t) ≈ 0.

• Finally, one can show that ISt:EB (t) ≤ ln(min{dimHS ,#{E}}), where #{E} denotes the

number of possible measurement results of the bath energy. For a small system and a large

bath, one thus often has ISt:EB (t) ≤ ln(dimHS), which is negligible if the system is very

small (e.g., a single qubit). Then, it also follows that ∆I(t) is negligible.

To conclude, Eq. (142) is the counterpart of Eq. (113) if (the difference of) SB correlations (“surface

effects”) is negligible.
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Next, we take a more detailed look at the bath entropy:

SB(t) = SBE [ρB(t)]− S(β∗t ) + S(β∗t ) ≈ SBE [ρB(t)]− SBE [π(β∗t )] + S(β∗t ). (143)

We have now introduced the nonequilibrium inverse temperature for the bath β∗t and used Eq. (137).

By using the defining property of the nonequilibrium temperature (equal internal energy of the

thermal and actual state), we get

SBE [ρB(t)]− S(β∗t ) = −D[pt(E)‖πβ∗t (E)] ≤ 0, (144)

where πβ∗t (E) = V B
E e
−β∗t E/ZB(β∗t ) is the probability to measure energy E for a thermal state at

inverse temperature β∗t . Thus, quite naturally we see that S(β∗t ) ≥ SBE [ρB(t)] with equality if and

only if pt(E) = πβ∗t (E) for all E, i.e., the coarse energy measurement of the bath cannot distinguish

the true state from an ideal thermal state.

The change in bath entropy can therefore be expressed as

∆SB(t) = S(β∗t )− S(β∗0)−D[pt(E)‖πβ∗t (E)] +D[p0(E)‖πβ∗0 (E)]

= −
∫ t

0
β∗td̄Q(t)−D[pt(E)‖πβ∗t (E)] +D[p0(E)‖πβ∗0 (E)],

(145)

where we used Eq. (124) at the end. Now, under the assumption that the change of SB correlations

is negligible, Eq. (142) can be rewritten as

∆SS(t)−
∫ t

0

d̄Q(t)

T ∗t
≥ D[pt(E)‖πβ∗t (E)]−D[p0(E)‖πβ∗0 (E)]. (146)

Now, the right hand side of this equation characterizes the athermality of the bath, i.e., how far

it can be distinguished from an ideal thermal state by coarse energy measurements. Again, the

precise behaviour of this term is model dependent and also depends on the choice of the initial

system bath state. For simplicity, let us assume that p0(E) = πβ∗0 (E). Non-negativity of relative

entropy then implies immediately

∆SS(t)−
∫ t

0

d̄Q(t)

T ∗t
≥ 0, (147)

which is the microscopic version of Eq. (114).

Finally, we note the relation

− Q(t)

T ∗0
= −S(β∗0)− trB{πB(β∗t ) lnπB(β∗0)}. (148)

Together with
∫ t
0 d̄Q(t)/T ∗t = S(β∗0)− S(β∗t ) we obtain

− Q(t)

T ∗0
+

∫ t

0

d̄Q(t)

T ∗t
= −S(β∗t )− trB{πB(β∗t ) lnπB(β∗0)} = D[πB(β∗t )‖πB(β∗0)] ≥ 0. (149)
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Thus, we find from Eq. (147) that

∆SS(t)− Q(t)

T ∗0
≥ D[πB(β∗t )‖πB(β∗0)] ≥ 0. (150)

Thus, precisely in the limit where the bath gets only slightly disturbed the general second law (139)

reduces to the expected result from Eq. (115).

Moreover, it is remarkable that there exists a hierarchy of second laws if we assume initially at

time t = 0 the Born approximation:

0 ≤ SXt [ρSB(t)]−SX0 [ρSB(0)] ≤ ∆SS(t) + ∆SB(t) ≤ ∆SS(t)−
∫ t

0

d̄Q(t)

T ∗t
≤ ∆SS(t)− Q(t)

T ∗0
. (151)

Remarkably, the difference between any two expressions is precisely quantified in terms of (quan-

tum) relative entropies. Moreover, in the weak coupling regime with negligible SB coupling and a

slightly perturbed bath, all expresions collapse to the second law introduced in Sec. I D. If the initial

state deviates from the Born approximation, there is no longer any clear ordering between these

expressions, but the general second law (139) remains valid for all initial states of the form (138).

Further reading

In this final section we much followed my own work [40], see also [1]. An important concept in our

derivation was the notion of a nonequilibrium temperature. It was introduced in phenomenological

nonequilibrium thermodynamics in 1977 [41, 42] and has appeared in various works in statistical

mechanics without, however, sharing wider popularity. Moreover, perhaps even more important

was the concept of observational entropy. Its definition was directly proposed by von Neumann

and Wigner [43, 44], van Kampen [45], among others. Again, however, this definition did not share

wider popularity until recently when it was revived in Refs. [46, 47], also see Ref. [48] for a short

overview. The simple relation (146) was discovered in Ref. [49], where it was also demonstrated

that it is very powerful as it shows that all thermodynamic processes in contact with finite baths

are more efficient. Moreover, it is possible to compute the time-evolution of observational entropy

directly using a master equation approach, which does not naively trace out the entire bath, but

keeps track of the coarse energy of the bath [23, 24]. This generalized master equation was first

introduced in Ref. [50] and it was shown that even at weak coupling it can significantly outperform

the standard BMS master equation [51].
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