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Preface

Recent decades have seen much progress in our understanding of thermodynamic pro-
cesses at the nanoscale. But nanoscale systems are very small, in most applications
far from equilibrium, often subject to strong fluctuations, and sometimes even char-
acterized by exotic quantum properties—so it seems as if these features rule out any
possibility to find a consistent thermodynamic description for them.

It is the primary objective of this book to show that this is not the case. There is a
thermodynamic framework, characterized by a remarkable internal consistency, which
is able to describe nanoscale systems even under extreme conditions. Moreover, this
framework does not only reaffirm the common folklore of thermodynamics (there is no
perpetual motion machine, etc.), but it provides a wealth of beautiful results beyond
the traditional scope of thermodynamics—opening up the possibility to understand a
plethora of different physical situations from a unified perspective.

The main title “Quantum Stochastic Thermodynamics” shall suggest that the
present book is about a synthesis of two research fields: classical stochastic thermo-
dynamics and quantum thermodynamics. Both have pushed the boundaries of the
applicability of the laws of thermodynamics by explaining and supplementing them
with microscopic considerations. For a considerable large class of nanoscale systems
and processes, I believe that most foundational questions are settled by now. The
present book is supposed to fill a gap in the literature by justifying this claim in de-
tail for a large variety of situations. I am also convinced that its content will prove
important to explore new territories at the rapidly evolving frontiers of this field.

The subtitle “Foundations and Selected Applications” shall emphasize that the
reader can mainly expect explanations about the basic theoretical pillars. These expla-
nations are supposed to be pedagogically accessible. However, the book is also driven
by the desire to introduce a general and versatile framework characterized by con-
ceptual clarity—in complete awareness of the fact that this poses additional technical
obstacles for the beginner. To remedy for that, a considerable effort is spent to trans-
parently explain common ‘jargon’ in the community (nonequilibrium entropies, local
detailed balance, Landauer’s principle, entropy production, time–reversal symmetry,
the arrow of time, etc.), which often appears unnecessarily mystified (a problem, which
seems to have tradition in thermodynamics and statistical mechanics). The reader will
not seldomly find the same (or closely related) results derived in different ways in order
to generate confidence and trust in the framework.

The field of quantum stochastic thermodynamics fascinates, however, not only
because it allows to addresss foundational questions about the nature of heat, entropy
or the second law, but also because it might have direct practical applications in
a world with increasing nanotechnological abilities. These applications could come
in form of efficient thermoelectric devices, powerful energy harvesters, fast cooling



viii Preface

strategies, or energy–efficient computers, among other more exotic applications. To
tie a close connection between foundational and practical problems, this book treats
a few selected applications in detail.

Unfortunately, due to a lack of time and understanding on the author’s side, this
book cannot cover all possible directions, which are investigated at the moment. The
selected material is obviously biased and I ask for the forbearance of my many col-
leagues, who feel that the present book misses some important ideas.

How to read this book

This book is written for graduate students, who know the basics of quantum mechanics
and equilibrium statistical mechanics and who can’t wait to combine these fields to
understand nonequilibrium phenomena. As a rule of thumb, you are ready to delve
into the book if the following equations do not scare you off:

∂

∂t
ρ(t) = − i

~
[H, ρ(t)],

ρ =
∑
n

λn|n〉〈n|,

Z(β) = tr{e−βH},

U(β) = − ∂

∂β
lnZ(β),

SB = kB lnV,

f(ε) =
1

eβ(ε−µ) + 1
.

Of course, this book is also written for more experienced researchers. I hope that they
will have no troubles in jumping between different sections of this book (though it
might help to first look at the “Basic Notation” section below). To get further ac-
quainted with the book, I here summarize its most important features.

Structure of the book: To get a complete picture, I believe one should sooner or
later read the entire book and then, it is perhaps most beneficial to go through it in lin-
ear order. However, I also believe that the impatient reader should not be afraid to skip
sections or chapters. For instance, Chapter 1 (“Quantum Stochastic Processes”) ap-
pears to be the most abstract one, in particular its second half. While I believe that this
more abstract point of view helps to view the entire field in a clear and unified way, it is
certainly not necessary to reach an understanding of Chapter 2 (“Classical Stochastic
Thermodynamics”), which solely requires some basic background knowledge of the the-
ory of classical stochastic processes. Likewise, readers with some familiarity with open
quantum system theory can directly start reading Chapter 3 (“Quantum Thermody-
namics Without Measurements”). To understand Chapter 4 (“Quantum Fluctuation
Theorems”), some background information from previous chapters is required. For
some sections of Chapter 5 (“Operational Quantum Stochastic Thermodynamics”) it
is necessary to have read and understood also the end of Chapter 1. Finally, three
appendices complement this book about topics, which appear at various points in the
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main text, but whose detailed exposition requires a longer detour, which would blur
the main narrative.

Structure of the sections: Typically, I have tried to start each section with
a small paragraph motivating its content and to end each section with a small sum-
mary or outlook. To facilitate orientation, some sections (in particular longer ones) are
divided into subsections using unnumbered subtitles. Furthermore, important state-
ments are distinguished by longer italic text and boxed equations highlight important
definitions or results.

Index: I have tried to make a long and informative index list. Words or phrases
appearing in this list are printed in a boldface font in the main text at the point,
where they are first introduced or explained. However, as I said above, the book is
characterized by presenting similar concepts in different contexts and from different
perspectives. Thus, the book is not written as an encyclopaedia, but tries to keep a
narrative, which is most beneficial for pedagogical purposes.

Exercises: Various exercises are scattered throughout the text. These exercises, some-
times supplemented by (hopefully) helpful hints how to solve them, should be rather
simple because I believe there is no benefit from torturing the reader. Exercises fall,
however, into two categories. The first category of exercises are the short ones. They
are supposed to supply simple crosschecks for the reader or, by asking to derive some
equations, to make the reader acquainted with standard mathematical manipulations
in the field. Then, there are also various longer exercises, which might even require
some simple symbolic programming. These longer exercises are typically meant to in-
troduce ideas, concepts or results, whose detailed exposition would probably bore the
more experienced reader in the field. Thus, the exercises help to keep the book more
concise, while allowing me at the same time to cover a wider range of topics. I remark
that all exercises appear during the text at the point where they fit best the overall
narrative.

References: In contrast to the exercises, all references are relegated to a special
“Further reading” section at the end of each chapter. Having the overall pedagogical
purpose of the book in mind, I indeed believe that there is little benefit from mentioning
references during the main exposition of the material. Moreover, it ought to be clear
that, given the breadth and scope of the present book, it is impossible to give credit
to all contributions and, seen again from a pedagogical perspective, I believe there is
little benefit from trying to do so here. Hence, this book should not be confused with
a conventional ‘review article.’ Most citations are given to the latest work, where the
main concepts or equations I rely on were first introduced or derived. Other citations
typically refer to expositions, which go beyond the here presented material in a wider
sense (i.e., books, review or introductory articles about fields related to but not part of
quantum stochastic thermodynamics). Finally, some citations are added for historical
clarity. Thus, the overall idea is that the list of references provides a first orientation
for the newcomer, not an exhaustive list of contributions to the field.
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Basic Notation

I tried to keep abbreviations to a minimum and used only those, which are widely used
in the literature. The three most important abbreviations, which appear scattered
throughout the text, are CP (completely positive), CPTP (completely positive and
trace–preserving) and BMS (Born–Markov–secular). In some equations, I write h.c. to
denote the Hermitian conjugate. Also the abbreviation POVM (positive operator–
valued measure) is used occasionally.

Below, I further provide a non–exhaustive list of the most important notation used
throughout the book.

General mathematics: Matrices are denoted by capital letters (such as M). Bold-
face letters are used for vectors (e.g., a vector of probabilities p) and sequences (e.g.,
a sequence of measurement results r), but their elements are written as, e.g., pj
or rn. Multiplication of vectors and matrices is written without a dot (e.g., Mp).
[A,B] = AB −BA and {A,B} = AB +BA denote the commutator and anticommu-
tator, respectively. A superscript ∗, T or † denotes complex conjugate, transpose or
the conjugate transpose, respectively. The imaginary unit is denoted i and the sym-
bol O(x) denotes that limx→0 |O(x)/x| <∞. Total and partial derivatives (e.g., with
respect to time t) appearing in inline equations are written as dt and ∂t, respectively.
Often used functions are the Heaviside step function Θ(x), the Kronecker delta δm,n
and the Dirac delta function δ(x− y).

Quantum dynamics: I use Dirac notation for states |ψ〉 and their conjugate transpose
〈ψ|, which live in a Hilbert space H and its dual, respectively. The scalar product is
written as 〈φ|ψ〉. To avoid unwanted technicalities, I assume Hilbert spaces are (or
can be approximated to be) finite dimensional: d = dimH < ∞. The density matrix
is typically denoted by ρ, whereas most other operators are denoted by capital letters
such as H,P,X, . . . and I is the identity. Exceptions are the familiar bosonic and
fermionic creation and annihilation operators (denoted typically by a(†), b(†), c(†), d(†))
and the Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.

The trace of some operator O is denoted tr{O}. Superoperators (also simply called
maps), which map operators onto operators, are always denoted by calligraphic let-
ters such as C,D,L, . . . . The tensor product is denoted ⊗ and additional subscripts
A,B, S . . . are used to indicate on which subspace some operator is acting (e.g., ρS)
or to denote the partial trace (e.g., trB{. . . }).

Statistical mechanics: Equilibrium concepts are denoted by calligraphic letters
such as the equilibrium internal energy U or equilibrium entropy S. Exceptions are
parameters such as temperature T or chemical potential µ. Out–of–equilibrium quan-
tities are denoted by, e.g., U and S if they refer to some expectation value or ensemble
average. Thermodynamic quantities defined along single stochastic trajectories are de-
noted by small Latin letters (e.g., u and s). The canonical ensemble (or Gibbs state)
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is denoted by the Greek letter π. For instance, πS(β) denotes the Gibbs state of some
system S at inverse temperature β.

Finally, every process starts at the initial time t0 = 0. Moreover, I do not set
Boltzmann’s and Planck’s constant kB and ~ to one. I believe that this makes the
physical content of many equations more insightful. For practical manipulations, this
choice is, of course, not the most convenient one, but since the majority of literature
sets kB ≡ 1 and ~ ≡ 1, I thought it is good to keep them here explicit.
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Quantum Stochastic Processes

Summary. This chapter describes the basic features of open quantum systems, i.e.,
quantum systems that are affected by noise due to uncontrollable degrees of freedom
of an environment or bath. This noise is responsible for effects such as dissipation,
decoherence and irreversibility. We study the equilibrium states of open quantum
systems and review tools from quantum measurement theory, which describe how
to extract information from an (open) quantum system. We generalize these tools
to multi–time statistics and define the notion of a quantum stochastic process and
a quantum Markov process. Finally, we study in which cases a quantum stochastic
process looks classical.

1.1 Isolated Quantum Systems

Time–independent case

A quantum system is described by a Hilbert space H and a state ρ called the density
matrix, which acts on that space. The density matrix is characterized by the facts
that it is Hermitian, ρ† = ρ (with † denoting the Hermitian conjugate), has unit trace,
tr{ρ} = 1, and is positive, ρ ≥ 0. Here, the notation ρ ≥ 0 is shorthand for 〈ψ|ρ|ψ〉 ≥ 0
for all |ψ〉 ∈ H.

The state of an isolated quantum system, i.e., a quantum system which is not in
contact with any other part of the world, obeys the Liouville–von Neumann equation

∂

∂t
ρ(t) = − i

~
[H, ρ(t)]. (1.1)

Here, H is the Hamiltonian operator characterizing the total energy of the system and
[A,B] ≡ AB−BA is the commutator. Furthermore, i and ~ are the familiar imaginary
unit and Planck’s constant. Note that we will also use the notation ∂tρ(t) to denote a
partial derivative with respect to time.

Isolated quantum systems have some important characteristics:

(i) There exists a unitary time evolution operator U(t) ≡ exp(−iHt/~), which means
that U(t)U(t)† = U(t)†U(t) = I, where I denotes the identity matrix. This time
evolution operator propagates the system state according to

ρ(t) = U(t)ρ(0)U(t)†, (1.2)

where ρ(0) denotes the initial state of the quantum system.
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(ii) The spectrum of the state ρ(t), i.e., its eigenvalues λk, do not change in time:

ρ(t) =
∑
k

λk|ψk(t)〉〈ψk(t)|. (1.3)

Here, λk is time–independent and |ψk(t)〉 belongs to an orthonormal basis of
wave functions, i.e., 〈ψk(t)|ψ`(t)〉 = δk,` with the Kronecker delta δk,`. Note that
the spectrum can be degenerate, i.e., it is possible that λk = λ` for some k 6=
`. Equation (1.3) follows from the fact that any unitary transformation of the
form (1.2) leaves the spectrum invariant since the characteristic polynomial does
not change:

det{ρ(t)− λI} = det{U(t)[ρ(0)− λI]U(t)†} = det{ρ(0)− λI}. (1.4)

Here, det{. . . } denotes the determinant of a matrix.

(iii) The purity of ρ(t), which measures the ‘mixedness’ of a state and is defined as
tr{ρ2}, is conserved. This follows immediately from point (ii) above or, alter-
natively, from eqn (1.1) and the fact that the trace is cyclic, i.e., tr{ABC} =
tr{CAB}. In particular, if the initial state is pure, i.e., tr{ρ(0)2} = 1, we have
ρ(t) = |ψ(t)〉〈ψ(t)| for some wave function |ψ(t)〉. This wave function evolves in
time according to the familiar Schrödinger equation:

∂

∂t
|ψ(t)〉 = − i

~
H|ψ(t)〉. (1.5)

Since the Schrödinger equation can be applied to compute the time evolution of
any of the |ψk(t)〉 in eqn (1.3), it is equivalent to the Liouville–von Neumann
equation (1.1).

(iv) The von Neumann entropy of the system, which is defined as

SvN(ρ) ≡ −tr{ρ ln ρ}, (1.6)

is constant in time. This follows again from point (ii) above because SvN[ρ(t)] =
−∑k λk lnλk, which implies that the von Neumann entropy quantifies the clas-
sical uncertainty about the state of the system. Alternatively, the conservation of
von Neumann entropy follows by using

d

dt
SvN[ρ(t)] = −tr

{
dρ(t)

dt
ln ρ(t)

}
(1.7)

and eqn (1.1). Note that eqn (1.7) holds only if the rank of the density operator
does not change during the evolution, which is guaranteed by point (ii) above. If
the rank changes in time, the von Neumann entropy is not differentiable. Note
that we use a subscript ‘vN’ for the von Neumann entropy throughout the book
because we want to distinguish it from the notion of thermodynamic entropy
introduced later on. Readers unfamiliar with information theoretic concepts of
entropy can find an overview in Appendix A.
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Time–dependent case

Quantum systems are often subjected to time–dependent fields in a lab, which can
be treated semiclassically (e.g., laser light). In this case, the Hamiltonian becomes
time–dependent and is denoted by H(λt), where the time–dependent parameter λt
specifies the external fields. We prefer the notation H(λt) instead of H(t) to avoid any
possible confusion with the Heisenberg picture. In the following, λt is called a driving
or control protocol and the state of such a driven system evolves in time according to
the Liouville–von Neumann equation (1.1) with H replaced by H(λt).

The evolution ρ(t) = U(t, 0)ρ(0)U†(t, 0) is still described by a unitary operator
U(t, 0), but its explicit computation is now more complicated. Formally, we have

U(t, 0) =

∞∑
n=0

(
− i
~

)n ∫ t

0

dt1H(λ1)

∫ t1

0

dt2H(λ2)· · ·
∫ tn−1

0

dtnH(λn)

=

∞∑
n=0

1

n!

(
− i
~

)n ∫ t

0

dt1· · ·
∫ t

0

dtn[H(λ1) . . . H(λn)]+

≡ exp+

[
− i
~

∫ t

0

dsH(λs)

]
,

(1.8)

where we abbreviated λtj ≡ λj and the subscript + denotes time–ordering. By dividing
the time interval [0, t] into n = t/δt small steps δt, we can also write

U(t, 0) ≈
n−1∏
j=0

e−iH(λj)δt/~, (1.9)

which becomes exact in the limit n→∞.
Strictly speaking, a driven quantum system is not isolated as it is in contact with

the external driving field. However, it is easy to check that the points (i) to (iv)
above are still satisfied for such a driven system. In contrast, the time evolution of a
quantum system, which interacts with another quantum system, is markedly different
as we will see in the rest of this chapter. Therefore, it seems wise to call a quantum
system ‘isolated’ as long as it evolves in time according to the Liouville–von Neumann
equation (1.1), whether the Hamiltonian is time–independent or not.

1.2 System–Bath Theories and the Origin of Noise

In reality, nobody has ever observed an isolated quantum system, at the very end
because the mere act of ‘observing’ a quantum system requires to couple it with an
external detector. We will, however, postpone the discussion of quantum measurement
theory to Section 1.4 and are here rather concerned with the fact that many quantum
systems interact with uncontrollable degrees of freedom of a so–called environment or
bath. One example is an atom (the ‘system’) interacting with the many electromagnetic
modes of the surrounding space (the ‘environment’). Another example is a single spin,
e.g., an impurity in a metal or crystal, interacting with many remaining spins and
phonons (lattice vibrations) of the surroundings. Finally, the historical origin of the
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Fig. 1.1 Open quantum systems. (a) Rough sketch of a system S in contact with a bath B

with which it can exchange energies, particles, entropy, etc. (b) Diagram of the Newcomen

atmospheric steam engine as an example of an ancient ‘open quantum system:’ Already

thermodynamics divided the universe into a system part and reservoirs. (c) (False–coloured)

scanning electron microscope image of a modern open quantum system: a quantum dot formed

by a nanowire (thin green line) in contact with electron reservoirs (yellow) and heaters (blue

and red). The picture is taken from Josefsson et al. (2018) and such setups will be treated in

further detail in Sec. 3.10.

theory of thermodynamics is rooted in the desire to understand, e.g., steam of water
in a container in contact with hot air produced by burning coal on the one side and
cold water on the other side. Here, the system is defined by the container, which
contains the so–called working medium or working fluid, whereas the outside hot
air and cold water are called a heat bath or reservoir. We will also use these words
from Chapter 2 on. In this chapter, however, we use the broader term ‘environment’
or ‘bath’ to refer to any external, uncontrollable part of the world, not necessarily
described by a thermodynamic variable such as temperature. It will become clear
throughout this book that the predictive power of the second law comes from an
efficient description of these uncontrollable degrees of freedom about which we have
only very little information.

Quantum systems which are not isolated but in contact with a bath or environ-
ment are called open quantum systems, see Fig. 1.1 for sketches. Conceptually, many
different approaches exist to describe them theoretically and a very powerful one is
to model the bath itself as another quantum system such that the system and the
bath (which we sometimes also call the universe) constitute one big isolated quantum
system. This is the origin of system–bath theory and we will see below that this is
indeed not an assumption: any open quantum system can be seen as being part of a
larger isolated quantum system.

Mathematically, the system–bath composite is a bipartite quantum system de-
scribed by the tensor product of the system and bath Hilbert space: HS ⊗ HB . The
dimension of that space is dim(HS ⊗HB) = dimHS · dimHB . For many applications
the dimension of HS is very small, e.g., dimHS = 2 for a single spin, whereas the
dimension of HB often very large, e.g., dimHB = 2NA where the Avogadro number
NA is of the order 1023. The dynamics of the system and the bath is governed by
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the Hamiltonian HSB = HS ⊗ IB + IS ⊗ HB + VSB . Here, HS and HB denote the
Hamiltonian of the isolated system or bath, respectively, and VSB denotes their in-
teraction. They sum up to the total Hamiltonian HSB . Whereas the system and bath
Hamiltonian commute (since they live on different Hilbert spaces) we have in general
[VSB , HS ] 6= 0 and [VSB , HB ] 6= 0. In the following, we suppress tensor products with
the identity for notational simplicity and write the system–bath Hamiltonian as

HSB = HS +HB + VSB . (1.10)

For simplicity, we assumed no driving λt here, but this will change in later chapters.
We remark that the tensor product structure of the system–bath composite assumes
the system and bath to be distinguishable objects and implies a particular choice of
gauge made when identifying what is the ‘system’ and what is the ‘bath.’

Since the system–bath composite is isolated, its global state described by the den-
sity operator ρSB(t) evolves according to the Liouville–von Neumann equation (1.1)
with H replaced by HSB . The system evolution is obtained by taking the partial trace:

ρS(t) = trB{ρSB(t)}. (1.11)

In contrast to the isolated case, the evolution of an open quantum system is signifi-
cantly different. None of the four points mentioned in Section 1.1 remain true:

(i’) The time evolution of ρS(t) is not described by a unitary operator.

(ii’) The eigenvalues of the system state change in time, i.e., eqn (1.3) is replaced by

ρS(t) =
∑
k

λk(t)|ψk(t)〉S〈ψk(t)|. (1.12)

(iii’) Since the eigenvalues of ρS(t) change, the purity of the state can change too. In
particular, an initially pure state becomes mixed in general.

(iv’) The von Neumann entropy is no longer conserved. Note that the von Neumann
entropy of the system can become larger or smaller during the evolution, without
violating the second law of thermodynamics. The second law states only that the
thermodynamic entropy of the universe, i.e., the system and the bath, cannot
become smaller in time. It does not imply that the von Neumann entropy of the
system state cannot decrease.

Illustrative example

We illustrate the above arguments by considering an assembly of n interacting spins.
Readers unfamiliar with open quantum systems are invited to explicitly follow this
example by doing their own numerics for it. We assume that the spins are described
by the following global Hamiltonian

HSB =
~Ω

2

n∑
i=1

σ(i)
z +

~
2

n∑
i=1

∑
j>i

gijσ
(i)
x σ(j)

x , (1.13)

where σ
(i)
α (α = x, y, z) are the familiar Pauli matrices acting on spin i. The first term

describes n isolated spins with energy gap ~Ω. The second term describes the interac-
tion between two spins with coupling strength gij . As our system we now choose one of
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the spins, say the first, such that HS = ~Ωσ
(1)
z /2. The bath Hamiltonian consequently

becomes HB = ~Ω
∑n
i=2 σ

(i)
z /2 + ~

∑n
i=2

∑
j>i gijσ

(i)
x σ

(j)
x /2 and the remaining part

defines the interaction Hamiltonian VSB . The initial state of the system and bath is
assumed to be decorrelated:

ρSB(0) = ρS(0)⊗ ρB(0), (1.14)

In the simulations, we take ρS(0) = |+〉〈+|S to be a pure state. Here, |+〉 ≡ (|0〉 +
|1〉)/

√
2 denotes a coherent superposition of the eigenstates of σz (with σz|0〉 = −|0〉

and σz|1〉 = +|1〉), which coincide with the energy eigenstates of HS . The bath instead
is taken to be a canonical equilibrium (Gibbs) ensemble with respect to the inverse
temperature β, denoted by

ρB(0) = πB ≡
e−βHB

ZB
, ZB ≡ trB{e−βHB}, (1.15)

where ZB is the partition function of the bath. Therefore, we assume the following
situation: previous to the initial time the first spin is decoupled from the others and
prepared in a superposition of energy eigenstates. Then, at time t = 0 we suddenly
switch on the interaction with the bath, which is assumed to be thermalized.

We aim at a numerical exact simulation of the system–bath dynamics based on the
Liouville–von Neumann equation (1.1). For n spins the total density matrix as well as
the unitary time evolution operator are 2n × 2n matrices. This exponential growth in
size necessarily limits us to consider only a few spins, precisely we consider 7 spins in
total (i.e., the bath consists of 6 spins). Note that one is often interested in a bath,
which is much larger in size. Computing the exact dynamics of an open quantum
system then quickly becomes impossible, which motivates the need for efficient and
reliable approximation schemes. For the moment, however, a small bath suffices to
illustrate our points above. To continue with the discussion of our model, let us choose
the spin–spin interactions gij random from a uniform distribution over [0, 1]. We do
not explicitly write down the values for gij here because the dynamics are qualitatively
similar for most choices.

Numerical results for an initial (dimensionless) bath temperature of β~Ω = 10 are
shown in Fig. 1.2. Note that this bath temperature is relatively cold, i.e., the energy
gap ~Ω of each single spin is 10 times larger than the typical energy kBT = β−1 of a
thermal excitation. Figure 1.2 (a) shows the time evolution of the expectation value

〈σ(1)
x 〉(t) = tr1{σ(1)

x ρS(t)}. For better comparison we also plot its time evolution in case
that the spin was isolated, i.e., for VSB = 0 (thin grey line). Their difference is quite
striking, in particular it is difficult to recognize any structure or pattern for the open
quantum system case. Figure 1.2 (b) shows the purity, which decreases as expected.
Note that the minimal value of the purity for a two–level system is 1/2. Figure 1.2
(c) shows the evolution of the von Neumann entropy, which is no longer conserved.
Note that the maximum value for the von Neumann entropy of a two–level system
is ln 2 ≈ 0.7. Figure 1.2 (d) shows the time evolution of a quantity, which plays an
important role throughout the book. It is known as the quantum relative entropy
defined in general as
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Fig. 1.2 Exemplary time evolution of an open quantum system for a ‘cold’ bath. The thin

grey line in the upper left picture shows the time evolution of an isolated system with identical

system Hamiltonian. The thin grey line in the lower right picture shows the time evolution

of the quantum relative entropy with respect to a reference state, which describes a refined

equilibrium state introduced in Section 1.3.

D(ρ|σ) ≡ tr{ρ(ln ρ− lnσ)} ≥ 0 (1.16)

for two arbitrary density matrices ρ and σ. The relative entropy is non–negative and
only zero if ρ = σ. It can be regarded as a measure of statistical ‘distance’ between ρ
and σ and further information is provided in Appendix A. In particular, we plot

D

[
ρS(t)

∣∣∣∣e−βHSZS

]
, (1.17)

i.e., the distance between the reduced system state and its associated Gibbs state at
the inverse temperature of the bath. One could naively expect that this difference
should become very small for long times in accordance with equilibrium statistical
mechanics. This is not the case for two important reasons. First, a bath of only 6 spins
is still too small to induce equilibration of a small quantum system. Second, even if
the bath were larger, equilibrium statistical mechanics in fact predicts a state different
from the Gibbs state as we will explain in detail in the next section. The time evolution
of the relative entropy with respect to this different state is shown by the thin grey
line, which is much closer to zero than eqn (1.17).

Finally, Fig. 1.3 shows the same plots as before, but for a different initial tempera-
ture of the bath. This time we chose β~Ω = 1 such that the thermal excitation energies
are comparable with the energy gap of each single spin. Equivalently, one could say
that we have more ‘noise’ in the bath. The difference compared with the cold case
β~Ω = 10 is quite striking. Oscillations are much less pronounced and eqn (1.17) be-
comes quite small after some transient time. This means that the standard equilibrium
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Fig. 1.3 Exemplary time evolution of an open quantum system for a ‘hot’ bath.

Gibbs ensemble describes the system state quite well. In fact, the system is well de-
scribed by a completely mixed state ρS(t) ≈ IS/2, which follows by considering the
time evolution of the purity.

To conclude, an open quantum system behaves very different from an isolated
quantum system. Even for a very small bath of only 6 spins effects such as equilibration
and thermalization start to become visible. Next, we consider equilibrium states of
open quantum systems in case that the bath is much larger.

1.3 Equilibrium States of Open Quantum Systems

Before we analyse equilibrium states of open quantum systems, it might be worth to ask
the question whether an open quantum system can actually reach an equilibrium state.
In fact, we have introduced open quantum systems via the system–bath paradigm, i.e.,
a composite system that evolves unitarily in time. This implies that, as long as the
system–bath composite can be described by a finite dimensional Hilbert space, the
dynamics is quasi–periodic. By this we mean the following. Let |ψ(0)〉 denote the
initial state of an arbitrary isolated system, which is here assumed to be pure for
simplicity. We denote the eigenvalues and eigenstates of its Hamiltonian H by En
and |n〉, respectively. Then, if we expand the initial state as |ψ(0)〉 =

∑
n cn|n〉 with

complex coefficients cn obeying
∑
n |cn|2 = 1, we can write the state at time t as

|ψ(t)〉 =
∑
n

cne
−iEnt/~|n〉, (1.18)

i.e., it is a sum of periodic functions with frequencies ωn ≡ En/~. If we wait long
enough, we might wonder whether there exists some time t and a set of natural numbers
{kn} such that ωnt = 2πkn for all n. This would then imply that 〈ψ(0)|ψ(t)〉 = 1, i.e.,
the system returned back to its initial state. If all frequencies are rational numbers, we
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can straightforwardly find such a time t. By assumption we can then write ωn = qn/rn
for some qn ∈ N and rn ∈ N. In particular, if we define N ≡ ∏n rn, we can write
ωn = mn/N for all n and some mn ∈ N. Thus, by choosing t = 2πkN , we obtain
〈ψ(0)|ψ(t)〉 = 1 for all k ∈ N, i.e., the quantum system returns infinitely often to its
initial state.

Things start to become more subtle if the ratio ωn/ωn′ of some pair of frequencies
becomes irrational. Indeed, it then never happens that 〈ψ(0)|ψ(t)〉 = 1. However,
irrational numbers can be approximated arbitrarily well by rational numbers. Hence,
it seems reasonable to expect from the foregoing argument that the system returns
after a sufficiently long time to its initial state up to a very small error. Indeed, one can
prove that an isolated finite dimensional quantum system returns arbitrarily close to
its initial state infinitely often, i.e., for any ε > 0 there exist infinitely many times t such
that |〈ψ(0)|ψ(t)〉| = 1− ε. This is known as quasi-periodicity. This result is also known
from classical mechanics as Poincaré’s recurrence theorem. Obviously, since an
open quantum system is a part of a larger isolated system, this also implies that any
open quantum system state returns infinitely often arbitrarily close to its initial state.
This seems to imply that we should not expect an open quantum system to equilibrate
at all and Poincaré’s recurrence theorem has played an important historical role in the
debate whether it is possible to derive the laws of thermodynamics from an underlying
microscopic perspective: If all states return arbitrarily close to their initial state, why
do we observe any irreversibility?

The key insight to resolve this question lies in the fact that the next time t for which
|〈ψ(0)|ψ(t)〉| = 1−ε happens grows incredibly fast with the number of coefficients cn in
eqn (1.18). This number is expected to scale with the number of particles in the system
because it is experimentally extremely unlikely to prepare a many–body system in a
state |ψ(0)〉, which contains only a few energy eigenstates |n〉. Then, if the isolated
system is composed out of N particles, e.g., the N spins in the previous example, one
generically expects the average recurrence time to scale double exponentially with N ,
i.e., t = O{exp[exp(N)]}. If one assumes that the number of particles is typically of the
order of 1023, the problem of Poincaré recurrences becomes irrelevant for all human
time scales.

Therefore, we assume for now that the system equilibrates and reaches a stationary
state limt→∞ ρS(t), where the notation t → ∞ means that we consider times much
larger than typical time scales of the open system evolution, but still, of course, smaller
than the Poincaré recurrence time. The next question is then: to which state will the
open quantum system equilibrate? Finding a complete answer to that question turns
out to be hard and is still subject of intense research. Since this is not the topic of
the book, we here restrict ourselves to invoking arguments from equilibrium statistical
mechanics, which work well in many cases.

For this purpose, we consider the familiar Gibbs state or canonical ensemble,
defined for any system with Hamiltonian H by

π ≡ e−βH

Z , Z ≡ tr{e−βH}. (1.19)

Here, β = (kBT )−1 is the inverse temperature and Z the partition function. If the
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internal energy U = tr{Hπ} is fixed, the Gibbs state is characterized by the fact that it
maximizes the von Neumann entropy with the inverse temperature implicitly defined
through the relation U = −∂β lnZ. Vice versa, for a fixed von Neumann entropy
SvN(π), the Gibbs state minimizes the energy with the inverse temperature implicitly
defined through the relation SvN(π) = −β2∂β(β−1 lnZ).

Now, suppose that the system–bath composite is well described by a global Gibbs
state πSB = e−βHSB/ZSB with ZSB ≡ trSB{e−βHSB}. How does the reduced system
state trB{πSB} look like? Perhaps surprisingly, it turns out that in general trB{πSB} 6=
πS = e−βHS/ZS . Only in case of very weak coupling between the system and the bath,
i.e., if VSB is negligible compared to HS and HB , the reduced system state equals the
conventional canonical ensemble. For non–negligible coupling VSB , however, we define
π∗S ≡ trB{πSB} and we have π∗S 6= πS .

Nevertheless, it is still possible to write π∗S in an apparent Gibbs form with respect
to an effective Hamiltonian H̃S :

π∗S = trB{πSB} =
e−βH̃S

Z̃S
. (1.20)

In fact, this is possible for every density matrix ρS by defining H̃S ≡ −β−1 ln(Z̃SρS),
and not only for π∗S . Notice that H̃S is only fixed up to an arbitrary choice of the
positive normalization constant Z̃S . For the reduced state π∗S of a canonical equilibrium
ensemble there is one convenient choice for the effective partition function, which we
denote by Z∗S = Z̃S and which is obtained by setting

Z∗S ≡
ZSB
ZB

=
trSB{e−βHSB}
trB{e−βHB}

. (1.21)

That is, the effective partition function Z∗S is the ratio of the partition functions of the
system–bath composite and of the bath alone. The corresponding effective Hamiltonian
is known as the Hamiltonian of mean force and reads explicitly

H∗S = − 1

β
ln(Z∗Sπ∗S) = − 1

β
ln

trB{e−βHSB}
ZB

. (1.22)

One quickly verifies that trB{πSB} = e−βH
∗
S/Z∗S . The Hamiltonian of mean force pro-

vides a neat concept used various times in the following chapters. Physically speaking,
it can be seen as an effective free energy landscape for the system, a claim that becomes
clearer in Chapter 2. Notice that the Hamiltonian of mean force depends explicitly on
the inverse temperature β. For weak coupling VSB , H∗S reduces to HS . Thus, the
familiar canonical ensemble only emerges in the weak coupling regime.

It is natural to ask: Does the effective Gibbs state (1.20) represent a good approx-
imation to the equilibrated open quantum system state, i.e., is π∗S ≈ limt→∞ ρS(t)?
If that is the case, we say that the system thermalizes, which is a stronger require-
ment than equilibration alone, which only assumes the system state to become time–
independent for long times. Paralleling the objections raised by Poincaré’s recurrence
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theorem above that equilibration can never strictly happen, similar doubts may rise for
the case of thermalization. In particular, no initial system–bath state ρSB(0) different
from πSB will ever reach the latter state during the evolution.

Exercise 1.1 Show that, if ρSB(0) 6= πSB and if HSB is time–independent, then ρSB(t) 6=
πSB for all t.

However, similar to the case of equilibration, also thermalization should be re-
garded as a convenient illusion by recalling that our experimental capabilities are
limited. For a bath with its prosaic 1023 degrees of freedom, the full system–bath state
ρSB(t), which is defined on a Hilbert space of dimension of the order of 101023

, remains
experimentally inaccessible. Instead, one typically has access only to a restricted set
of observables, for instance, those determined by looking at the open quantum sys-
tem. Thermalization to eqn (1.20) is then very likely to happen as long as one can
meaningfully associate some macroscopic temperature T to the bath. Exceptions are,
for instance, a bath consisting of two parts kept at different temperatures (a scenario,
which becomes relevant for later chapters to study transport processes) or a bath
prepared in a giant Schödinger cat state as a superposition of two very different en-
ergies (an unlikely scenario). Furthermore, also in presence of additional conservation
laws, i.e., if some observables commute with the global Hamiltonian, thermalization
to eqn (1.20) will typically not happen. However, if these scenarios can be excluded,
many open quantum systems thermalize to eqn (1.20), regardless of the initial state
ρS(0). In fact, this observation is confirmed by our example at the end of Section 1.2.
The grey lines in Figs. 1.2 (d) and 1.3 (d) shows the time evolution of D[ρS(t)|π∗S ]. We
see that even for a bath of only six spins, π∗S can represent a good approximation to
the open system state, even at low temperatures, i.e., in the regime where quantum
fluctuations dominate thermal fluctuations.

The last observation raises the question whether the deviation of π∗S from the
standard Gibbs state πS is mainly caused by quantum effects. In general, this does not
need to be the case, but we will return to this question more rigorously in Section 3.6
when we discuss the zeroth law of thermodynamics. For now, we conclude this section
by studying an important class of models for which there is a clear difference between
π∗S and πS in the quantum and classical regime.

Exercise 1.2 Consider a harmonic oscillator with frequency ω and Hamiltonian (in mass-
weighted coordinates) HS = 1

2
(p2
S+ω2x2

S) coupled to a ‘bath’ of one other harmonic oscillator
with the same frequency ω. The global Hamiltonian is

HSB = HS +
1

2

[
p2
B + ω2

(
xB −

c

ω2
xS
)2
]
. (1.23)

Here, the coupling strength is c and we have written the Hamiltonian in a manifestly positive
form such that HSB ≥ 0 for any choice of ω and c. Now, show first that, if treated as a classical
system, there is no correction to the thermal state of the system: π∗S = πS = e−βHS/ZS . Hint:
Remember that the trace over the bath degrees of freedom becomes classically an integral
over the phase space coordinates (xB , pB) of the bath.

Then, show that quantum mechanically this is no longer true. Hint: You are not asked
to directly compute H∗S , but only to show that π∗S 6= πS . This can be done in various ways.
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One way is to compute the equilibrium variance of the system coordinate tr{x2
SπSB} by

changing to normal modes. Denote the (squared) eigenfrequencies of HSB by Ω2
± ≡ [c2 +

2ω4 ±
√
c4 + 4c2ω4]/2ω2 and show that

tr{x2
SπSB} = ~ eβ~(Ω++Ω−) − 1

(Ω+ + Ω−)(eβ~Ω+ − 1)(eβ~Ω− − 1)
. (1.24)

Confirm that in the classical limit (~→ 0) this result is independent of the coupling strength
c. Also confirm that for c→ 0 you recover the result trS{x2

SπS} = ~ coth(β~ω/2)/2ω showing
that even at zero temperature quantum fluctuations give rise to a non-zero variance.

The above result can be generalized to a system–bath Hamiltonian of the form

HSB = HS +
1

2

∑
k

[
p2
k + ω2

k

(
xk −

ck
ω2
k

S

)2
]
. (1.25)

This describes a system with arbitrary Hamiltonian HS coupled via an arbitrary system
coupling operator S to a bunch of harmonic oscillators. Such system–bath models, which are
well justified whenever the statistics of the bath are (approximately) Gaussian, are known as
Caldeira–Leggett models and they play an important role in the theory of open quantum
systems. Convince yourself of the fact that for a classical system the Hamiltonian of mean
force is identical to the system Hamiltonian: H∗S = HS . Obviously, this does no longer hold
for quantum systems. Computing the exact reduced equilibrium state of the open quantum
system is possible, but it is no longer a triviality.

1.4 Quantum Measurement Theory

We now start to focus on the question how to obtain information about a quantum
system by considering measurements at a single point in time. For that purpose it is
sufficient to simply consider an arbitrary system state ρS , neglecting for a moment the
possible presence of a bath. We will come back to the question how to treat multi–time
measurements under the influence of a bath in Section 1.6 onwards.

Projective measurements

In quantum mechanics the measurement of a system observable XS is described by the
projection postulate. Let XS =

∑n
x=1 λ(x)ΠS(x) be the spectral decomposition of the

observable with n different eigenvalues λ(x), which are labeled by the index x. Further-
more, {ΠS(x)} is a set of projection operators satisfying ΠS(x)ΠS(x′) = δx,x′ΠS(x)
and

∑n
x=1 ΠS(x) = IS . If the state of the system is ρS , then the probability to observe

result x is p(x) = trS{ΠS(x)ρS}. The post–measurement state ρ′S(x) conditional on
observing x becomes

ρ′S(x) =
ΠS(x)ρSΠS(x)

p(x)
. (1.26)

The average or unconditional post–measurement state ρ′S of the system follows as

ρ′S =

n∑
x=1

p(x)ρ′S(x) =

n∑
x=1

ΠS(x)ρSΠS(x). (1.27)

Notice that this state is in general different from the pre–measurement state, ρ′S 6=
ρS , which reflects the well–known fact that quantum measurements are disturbing.
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This measurement backaction is only absent if the initial state commutes with the
observable: [ρS , XS ] = 0. Even in this case, however, the conditional state (1.26) is
in general different from the pre–measurement state, i.e., ρ′S(x) 6= ρS . This is not a
quantum effect, but a consequence of the fact that the observer updates its state of
knowledge about the system. Readers, who feel unfamiliar with this description, are
advised to do the following exercise.

Exercise 1.3 Consider the case where all projectors ΠS(x) = |x〉〈x|S are of rank 1 and the
system state is pure: ρS = |ψ〉〈ψ|S . Convince yourself of the fact that the above framework
then reduces to the conventional picture known from introductory textbooks in quantum
mechanics. What corresponds to the Born rule? Which equation describes the ‘collapse’ of
the wave function? When does the measurement reveal no information, i.e., when do we have
ρ′S(x) = ρS? Can you think about physical examples where the projectors are not of rank 1?

Remarkably, it is possible to derive eqn (1.27), which describes the average effect
of a quantum measurement, using only unitary dynamics and no projection postulate.
This works as follows. Consider a second n–dimensional ‘auxiliary’ quantum system
A, called the ancilla in the following, which interacts with our system S of interest.
Imagine that the initial system–ancilla state is decorrelated, ρSA = ρS ⊗ ρA, and the
ancilla is prepared in some fixed pure state ρA = |1〉〈1|A. Furthermore, assume that
the overall system–ancilla interaction is described by the following unitary operator

V =

n∑
x=1

ΠS(x)⊗
n∑
r=1

|r + x− 1〉〈r|A, (1.28)

where we interpret r + x − 1 modulo n whenever r + x − 1 > n. It is easy to verify
that V is unitary satisfying V V † = V †V = ISA. The joint system–ancilla state after
the interaction consequently reads

ρ′SA = V ρS ⊗ ρAV †. (1.29)

The reduced state of the system is obtained by tracing out the ancilla,

ρ′S = trA{V ρS ⊗ ρAV †} =

n∑
x=1

ΠS(x)ρSΠS(x), (1.30)

which is identical to eqn (1.27). Thus, the average effect of a system measurement arises
in this picture from interactions of the system with an outside ancilla. By tracing out
the ancilla, we loose information and the reduced dynamics is no longer unitary.

To derive the conditional post–measurement state (1.26) in this picture, assume
that we subject the ancilla to a projective measurement of the observable RA =∑n
r=1 r|r〉〈r|A. Suppose this projective measurement of RA reveals outcome r, then

the conditional post–measurement reads ρ′SA(r) = |r〉〈r|AV ρS⊗ρAV †|r〉〈r|A. Keeping
the information about r, but tracing out the ancilla degrees of freedom, reveals

ρ̃′S(r) ≡ trA{|r〉〈r|AV ρS ⊗ ρAV †} = ΠS(r)ρSΠS(r). (1.31)

After identifying x ≡ r, we obtain eqn (1.26) up to normalization. In fact, the trace of
the non–normalized state ρ̃′S(r) equals the probability to obtain measurement result
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Fig. 1.4 Circuit representation of an ancilla–assisted measurement with time running from

left to right. The input states to the process (left triangles) are a system and ancilla state ρS
and ρA. Both interact via a unitary transformation, denoted here with a calligraphic symbol

V. The joint state ρ′SA after the interaction is in general correlated. To finally infer something

about the system, the experimentalist measures the state of the ancilla, here with projector

|r〉〈r|A. The conditional post–measurement state of the system is denoted ρ′S(r).

r: p(r) = trS{ρ̃′S(r)} = trS{ΠS(r)ρS}. Hence, the normalized state reads ρ′S(r) =
ρ̃′S(r)/p(r) in agreement with eqn (1.26).

As we will see throughout the remainder of this book, ancillas provide us with
a flexible mathematical tool to think about quantum measurements and much more.
They can be seen as comprising the essential features of an environment in an abstract
and minimal way. Physically, the use of ancillas can be motivated as follows. In order
to find out something about a system, an experimentalist prepares an external probe
and puts it into contact with the system. Then, both start to interact and, depending
on the state of the system, the system imprints some information onto the probe.
Finally, the experimentalist reads out the state of the probe in order to infer something
about the system. This picture is often justified by recognizing that an experimentalist
has precise control about the detectors in the lab—how they are prepared, how they
intervene with the system, and how they are read off—whereas the system itself is
given by nature and can be only indirectly accessed via the detectors found in the
lab. An experiment, in which this picture becomes particularly transparent, will be
treated in detail at the end of this book in Section 5.7. A pictorial representation of this
process is provided in Fig. 1.4. For the rest of this section we focus on investigating the
process in Fig. 1.4 in greater detail, finding that it can describe generalized quantum
measurements beyond the projection postulate.

Generalized measurements

We generalize the picture above by starting with an arbitary initial ancilla state,
written in its eigenbasis as ρA =

∑
j pj |j〉〈j|A, an arbitrary unitary V , not necessarily

the one specified in eqn (1.28), and a final projective measurement of some ancilla
observable RA =

∑n
r=1 r|r〉〈r|A. As above, we now take a look at the conditional state

of the system given the measurement result r of RA. Tracing out the ancilla, we get
the non–normalized system state

ρ̃′S(r) = trA{|r〉〈r|AV ρS ⊗ ρAV †} =
∑
j

pj〈r|A
(
V |j〉A

)
ρS〈j|A

(
V †|r〉A

)
. (1.32)

Next, we introduce the operators
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Kj(r) ≡
√
pj〈r|A (V |j〉A) . (1.33)

Notice that the Kj(r) are still operators acting on the system Hilbert space. Using
them, we can express eqn (1.32) more compactly as

ρ̃′S(r) =
∑
j

Kj(r)ρSK
†
j (r). (1.34)

This equation makes it more transparent how the system state gets actually trans-
formed by computing the operators Kj(r) via eqn (1.33). In terms of them, we can
also express the probability to obtain measurement result r as

p(r) = trS{ρ̃′S(r)} =
∑
j

trS

{
K†j (r)Kj(r)ρS

}
. (1.35)

This equation suggests to introduce the following probability operators

M(r) ≡
∑
j

K†j (r)Kj(r), (1.36)

which are always positive, M(r) ≥ 0, which follows from the fact that any operator of
the form A†A is positive. Furthermore, they satisfy the completeness relation∑

r

M(r) = IS . (1.37)

Moreover, the set of operators {M(r)} completely fixes the measurement statistics
and therefore plays an important role in quantum measurement theory, where they
are known as a positive operator–valued measure or, in short, a POVM.

Exercise 1.4 Show that any set of operators {M(r)}r satisfying the completeness relation
and M(r) ≥ 0 for all r gives rise to a set of well–defined probabilities p(r) = trS{M(r)ρS}
for any state ρS . Hint: By ‘well–defined’ we mean probabilities that are positive and sum up
to one.

We now study two examples to illustrate how the projection postulate can be
generalized. The first example describes projective measurement of the initially studied
observable XS =

∑n
x=1 λ(x)ΠS(x), but it includes classical measurements errors. For

this purpose we relabel j ≡ x in eqn (1.33) and model the measurement with operators
Kx(r) =

√
p(r|x)ΠS(x) giving rise to the probability operator

M(r) =
∑
x

p(r|x)ΠS(x). (1.38)

For {M(r)} to be a POVM, we demand that the p(r|x) are non–negative numbers
normalized according to

∑
r p(r|x) = 1. Using eqn (1.34), the non–normalized post–

measurement state of the system becomes

ρ̃′S(r) =
∑
x

p(r|x)ΠS(x)ρSΠS(x). (1.39)

Its norm equals the probablity to obtain result r, p(r) =
∑
x p(r|x)trS{ΠS(x)ρS},

which has a transparent interpretation: Since trS{ΠS(x)ρS} equals the probability
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to obtain result x in an error–free projective measurement, p(r|x) is the conditional
probability to obtain result r given that an error–free measurement had given result x.
Thus, due to some errors in the classical data processing, erroneous detection events
of r 6= x can occur. The case of error–free measurements is recovered if p(r|x) = δr,x,
where eqn (1.39), after normalization, reduces to eqn (1.26).

The second example also describes a measurement of XS with errors, but this time
the errors cannot be explained classically. For this purpose, let us consider operators
K(r) =

∑
x

√
p(r|x)ΠS(x) (without any label j), which gives rise to

M(r) =
∑
x

p(r|x)ΠS(x), (1.40)

which coincides with eqn (1.38). Thus, they give rise to the same measurement statis-
tics. However, the post–measurement state looks very different:

ρ̃′S(r) = K(r)ρSK(r) =
∑
x

√
p(r|x)ΠS(x)ρS

∑
x′

√
p(r|x′)ΠS(x′). (1.41)

This teaches us an important lesson, namely that the probablity operators M(r) do
not uniquely fix how the state changes due to the measurement. The next exercise
elucidates the difference between eqns (1.39) and (1.41) further.

Exercise 1.5 Consider an initially pure state ρS = |ψ〉〈ψ|S . Then, show that the post–
measurement state given by eqn (1.41) is always pure, i.e., [ρ′S(r)]2 = ρ′S(r), whereas this is
in general not the case for eqn (1.39). Thus, eqn (1.41) preserves the ‘quantum character’ of
the state, whereas eqn (1.39) inevitably introduces classical noise.

Summary

We summarize what we found out in this chapter. By shifting the description of the
projective measurement from the system itself to an external ancilla, with which the
system interacts in a unitary way, we obtained a more general description of quantum
measurements expressed by system state changes of the form (1.34). It includes the
case of projective measurements, but as eqns (1.39) and (1.41) have shown also more
general transformations. The generalization of the average unconditional system state
after a projective measurement, eqn (1.27), follows from eqn (1.34) as

ρ′S =
∑
r

p(r)ρ′S(r) =
∑
r

ρ̃′S(r) =
∑
r

∑
j

Kj(r)ρSK
†
j (r). (1.42)

To simplify the notation, we introduce the multi–index α = (r, j) and write

ρ′S =
∑
α

KαρSK
†
α. (1.43)

Due to trace conservation, we know that the operators Kα must satisfy the complete-
ness relation
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∑
α

K†αKα = 1. (1.44)

Apart from this relation, it turns out that the operators Kα are indeed arbitrary. We
will learn more about them from an abstract perspective, which is not necessarily
related to quantum measurements, in the next section.

It is instructive to point out the similarities and differences between the system–
ancilla picture and the system–bath picture of Section 1.2. In both cases the system
is open due to its coupling to some external degrees of freedom. However, we did not
call the ancilla a ‘bath’ here because its interpretation is quite different in the present
context. Whereas the bath was introduced in Section 1.2 as an uncontrollable and
typically large object, the small and controllable ancilla of this section was introduced
to probe the state of a quantum system. The physical interpretation of this situation
is different, but—as the next sections will show in greater detail—the mathematical
description is essentially the same. Before proceeding, we conclude this section with a
final exercise to elucidate the difference between classical and quantum measurements.

Exercise 1.6 Construct the classical counterpart of the theory above. To this end, replace
the notion of the density matrix ρS by a vector p with elements p(x) denoting the prob-
ability to find the classical system in state x. Let p(r|x) be the conditional probability to
obtain the measurement result r given that the system is in state x and define the ma-
trix M(r) with elements Mxx′(r) = δx,x′p(r|x). What do {M(r)} and a POVM have in
common? What is the quantum counterpart of the classical expression M(r)p? Relate the
probability p(r) =

∑
x p(r|x)p(x) to obtain outcome r to the expression M(r)p. Show that

the (normalized) post–measurement state of the system given result r obeys Bayes’ rule
p′(x|r) = p(r|x)p(x)/p(r). Finally, verify that the average post–measurement state does not
change: p′ = p. Thus, Bayes’ rule describes the most general non–disturbing classical mea-
surement.

1.5 Operations, Interventions and Instruments

The goal of this section is to review the formalism of quantum measurement theory
from an abstract perspective and to introduce some terminology and powerful math-
ematical results. From now on, we call the map (1.43) in general a (control) operation
or intervention. These notions emphasize that an experimentalist has a large amount
of freedom to manipulate a quantum system and the intention might not always be to
‘measure’ the system in a literal sense. We further abbreviate eqn (1.43) as

ρ′S = CρS ≡
∑
α

KαρSK
†
α. (1.45)

The map C, which takes an operator and maps it to another operator, is also known as
a superoperator to distinguish it from the notion of a ‘usual’ operator, which ‘only’
maps vectors onto vectors. Mathematically speaking, this distinction is superfluous:
the space of matrices forms itself a vector space and therefore, one can represent any
superoperator C also by a (large) matrix. For physics applications it is, however, advan-
tageous to use a terminology and notation, which distinguishes whether an operator
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acts on states |ψ〉 or density matrices ρ. From now on, we frequently use superopera-
tors as an efficient bookkeeping tool. By convention, superoperators are always written
with a calligraphic letter such as C and they act on all operators to their right, i.e.,
C2C1ρ = C2[C1(ρ)]. Note that the action of different superoperators does not commute
in general, i.e., C2C1ρ 6= C1C2ρ. Readers, who are exposed to this for the first time, are
advised to consult Appendix B before proceeding.

We also introduce the superoperator C(r) corresponding to eqn (1.34):

ρ̃′S(r) = C(r)ρS ≡
∑
αr

KαrρSK
†
αr , (1.46)

which is obtained from eqn (1.45) by using only a subset of the operators Kα. The
subsets of indices {αr} are obtained from the total set {α} by a disjoint decomposition
such that

∑
r C(r) = C. In the following we call a set of maps {C(r)} that decomposes

an operation C of the form (1.45) such that
∑
r C(r) = C an instrument. Notice that,

given only eqn (1.45), there are many instruments that decompose C.
Now, our claim is that eqn (1.45) describes the most general control operation or

intervention we can implement in a laboratory on a quantum system at a single time.
To verify this, let us find the minimial conditions we would like to have satisfied by
an instrument {C(r)} such that it describes a physically allowed control operation in
a lab. Clearly, if the state of the system was previously described by a valid density
matrix ρS , the minimal requirement is that also the final set of states {ρ̃′S(r) = C(r)ρS}
can be interpreted in a legitimate way as the state of a physical system. Recall that
any density matrix ρ is positive, has unit trace, and, if ρ1 and ρ2 are two valid density
matrices, then their convex combination λρ1 + (1 − λ)ρ2 for any λ ∈ [0, 1] is another
valid density matrix. Therefore, we postulate that any physically legitimate instrument
{C(r)}r should at least satisfy the following:

(i) C(r) is positive: If ρS ≥ 0, then also C(r)ρS ≥ 0.

(ii) C(r) is trace non–increasing: If tr{ρS} = 1, then p(r) = tr{C(r)ρS} is the probabil-
ity to apply the map C(r) (in view of a quantum measurement, it is the probability
to obtain result r). If p(r) = 1, C(r) = C is called trace–preserving.

(iii) C(r) is convex linear: If
∑
i λiρ

(i)
S is a statistical mixture of quantum states with

λi ≥ 0 satisfying
∑
i λi = 1, then

C(r)
∑
i

λiρ
(i)
S =

∑
i

λiC(r)ρ(i)
S . (1.47)

Now, to make things even a little more complicated, it turns out that desideratum
(i) is not enough. Remember that C(r) could describe, for instance, a measurement of
a system S coupled to a bath B. Prior to the measurement the system–bath state ρSB
can be arbitrary and we would like to ensure that the post–measurement state also
describes a legitimate quantum state. This means that we actually want the global
state ρ̃′SB(r) = [C(r) ⊗ IB ]ρSB ≥ 0 to be positive, where IB denotes the identity
operation acting on the bath defined via IBρB ≡ ρB for any state ρB . This is not
necessarily guaranteed by the notion of a positive map. Therefore, we replace (i) by
the stronger condition:
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(i’) C(r) is completely positive: Consider the composite system HS ⊗ HB with
HB an arbitrary Hilbert space. If ρSB ≥ 0 is an arbitrary positive state of the
composite system, then also [C(r)⊗ IB ]ρSB ≥ 0 is positive.

Exercise 1.7 An example for a positive but not completely positive map is the transpose
operation T . Let ρ = ρ00|0〉〈0| + ρ01|0〉〈1| + ρ10|1〉〈0| + ρ11|1〉〈1| be an arbitrary density
matrix of a qubit, then the transpose operation with respect to the basis {|0〉, |1〉} is defined
via T ρ ≡ ρ00|0〉〈0|+ ρ10|0〉〈1|+ ρ01|1〉〈0|+ ρ11|1〉〈1|. Show that this map is positive, but not
completely positive. Hint: As a counterexample consider the transpose operation acting on
the first qubit of the pure and maximally entangled bipartite state (|00〉+ |11〉)/

√
2.

We remark that the distinction between positivity and complete positivity is a
quantum phenomenon: classically, all postive maps are also completely positive. Fur-
thermore, the next exercise shows that any convex linear map acting on density ma-
trices can be extended to a linear map acting on arbitrary matrices. We therefore use
the notions convex linearity and linearity in the following synonymously.

Exercise 1.8 Let C be a convex linear map acting on density matrices ρ of a Hilbert space
with dimension dimH = d. Show that every complex d × d matrix A can be written as a
linear combination of density matrices ρi with complex coefficients ci ∈ C, i.e., A =

∑
i ciρi.

Hint: To do so, you can use the two fundamental results that, first, every A can be written
as A = A1 + iA2 with A1 = A†1 and A2 = A†2 being Hermitian and, second, every Hermitian
A can be decomposed as A = A+ −A− with A± ≥ 0 being positive.

The extension C̃ of C is then defined via C̃A ≡
∑
i ciCρi and in the following, tacitly

assuming this extension, we identify C ≡ C̃.

To conclude, physically legitimate operations are mathematically described by an
instrument, which is a collection of completely positive, trace non–increasing and linear
maps, which we call CP maps. All CP maps of an instrument have to add up to a
completely positive and trace–preserving map, which we call a CPTP map. There
are two important theorems to characterize CP(TP) maps mathematically.

Operator–sum representation. A map C(r) satisfies desiderata (i’), (ii) and (iii)
if and only if it can be written as in eqn (1.46) for some operators Kαr satisfying∑
αr
K†αrKαr ≤ IS. If

∑
αr
K†αrKαr = IS, then C(r) = C is trace–preserving. Equa-

tions (1.45) or (1.46) are called the operator–sum representation of a CP(TP) map.

It is not too hard to show that a map of the form (1.46) with
∑
αr
K†αrKαr ≤ IS

satisfies points (i’), (ii) and (iii). The other direction is harder to show and not done
here. Instead, we only note that the operator–sum representation (1.46) is not unique
as explicitly shown by the next exercise.

Exercise 1.9 Consider the map Cρ =
∑d
α=1 KαρK

†
α and define Kα ≡

∑
α UαβK̃β for an

arbitrary d× d unitary matrix U . Show that Cρ =
∑d
α=1 K̃αρK̃

†
α.

It turns out that there is another important representation theorem for an instru-
ment, which brings us back to our ancilla construction used in the previous section.
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Unitary dilation theorem. A set of maps {C(r)} acting on a d–dimensional sys-
tem Hilbert space HS forms an instrument if and only if there exists a d2–dimensional
‘ancilla’ Hilbert space HA, a unitary USA acting on HS ⊗ HA, a pure ancilla state
|φ〉A ∈ HS and a set of projectors {ΠA(r)} acting on the ancilla space such that

C(r)ρS = trA{ΠA(r)USA(ρS ⊗ |φ〉〈φ|A)U†SA} (1.48)

for all r. In particular, a map C is CPTP if and only if it can be written as

CρS = trA{USA(ρS ⊗ |φ〉〈φ|A)U†SA}. (1.49)

We are not going to prove the unitary dilation theorem here, but only discuss its
consequences. For instance, the next exercise shows that the number of operators Kα

appearing in the operator–sum representation is at most d2 with d = dimHS .

Exercise 1.10 Use the unitary dilation theorem to derive eqns (1.45) and (1.46) by giving
explicit expressions for the operators Kαr and Kα in terms of USA, |φ〉A and ΠA(r). Confirm
that the maximum number of operators Kα is d2. Hint: Remember eqn (1.33).

We remark that it is also possible to use the operator–sum representation to de-
rive the unitary dilation theorem. Hence, both are equivalent statements. The physical
significance of the unitary dilation theorem is that it teaches us that every allowed
state transformation in quantum mechanics satisfying desiderata (i’), (ii) and (iii) can
be constructed by more primitive transformations, namely unitary evolution and pro-
jective measurements. We therefore do not need to add any axiom to the standard
textbook framework of quantum mechanics in order to describe generalized measure-
ments or other general state transformations.

The unitary dilation theorem also fits well into our system–bath paradigm from
Section 1.2 if we regard the ancilla as the bath coupled to the system. From that
perspective, it tells us that every state change of a quantum system can be explained
through the interaction with an external environment, which we might call an an-
cilla or a bath depending on the context. Care is, however, required here because the
unitary dilation theorem is an abstract statement and does not tell us for a given trans-
formation of the system what is the actual environment causing this transformation.
This is related to the non–uniqueness of the operator–sum representation: there are
infinitely many Hilbert spaces HA, unitary matrices USA, states |φ〉A (possibly also
mixed states) and projectors ΠA(r) satisfying eqns (1.48) and (1.49).

Before concluding this section, we point out a subtle but important observation.
What the unitary dilation theorem also teaches us is that satisfying desiderata (i’),
(ii) and (iii) is equivalent to representing the interaction of the system with some
environment, which is initially decorrelated from the system, i.e., of the form ρS ⊗
|φ〉〈φ|A. However, the evolution of an open quantum system (1.11) could also result
from a system initially correlated with the environment. In this case, the operator–
sum representation and the unitary dilation theorem break down. The reason is that
desideratum (iii) (linearity) is then no longer satisfied. This is exemplified in the next
exercise and a way out of this ‘dilemma’ is presented in Section 1.7.
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Exercise 1.11 Consider the interaction of two qubits. The first qubit is called the system
and the second the ancilla. We further introduce the maximally entangled states |±〉 =

(|00〉+|11〉)/
√

2, where by convention we set |ij〉 ≡ |i〉S⊗|j〉A for i, j ∈ {0, 1}. Let the system–
ancilla interaction be modeled by the unitary USA = |+〉〈+| + |−〉〈10| + |10〉〈−| + |01〉〈01|
(check that this is a unitary matrix). The evolution of the composite system is therefore

modeled via ρ′SA = USAρSAU
†
SA, which is clearly linear with respect to the joint input state

ρSA and CPTP.
Next, consider the reduced dynamics of S assuming that the initial system–ancilla state

ρSA = |+〉〈+| is entangled. Verify the following results: (1) the initial reduced system state is
ρS = (|0〉〈0|+ |1〉〈1|)/2; (2) the final system state is identical to the initial system state, ρ′S =

trA{USA|+〉〈+|U†SA} = ρS ; (3) if we first perform a measurement of the initial system in its
eigenbasis, the initial system state does not change on average: |0〉〈0|ρS |0〉〈0|+|1〉〈1|ρS |1〉〈1| =
ρS ; but (4) the final system state after such an initial measurement

trA{USA(|0〉〈0|ρSA|0〉〈0|+ |1〉〈1|ρSA|1〉〈1|)U†SA} =
1

4
|0〉〈0|+ 3

4
|1〉〈1| (1.50)

is different from ρS . Hence, we have a ‘paradox’ because the same reduced initial system
state gives rise to two different final states. Thus, we cannot associate any map C, which only
acts on the system part, to this input–output relation.

How can this be resolved? Clearly, from a global point of view there is no paradox: the
two initial states ρSA = |+〉〈+| and |0〉〈0|SρSA|0〉〈0|S + |1〉〈1|SρSA|1〉〈1|S are different (albeit
they give rise to the same reduced system state), and hence there can be two different output
states. With respect to our construction above, the key insight is to realize that it is no longer
meaningful to speak about different initial system states if the system is initially entangled with
its environment (here, the ancilla). In particular, we assumed that it is possible to mix (or
convex combine) different system states without influencing the dynamics, i.e., the definition
of the map. This assumption is incompatible with having an initial system state entangled
with its environment.

We summarize the content of the last two sections, which play an important role
in the following. First, quantum systems can undergo more general state transfor-
mations than unitary evolutions and projective measurements. However, even general
state transformations can be constructed using only unitary evolutions and projective
measurements on a bigger system–ancilla (or system–bath) space. If the desiderata
(i’), (ii) and (iii) are satisfied, where point (iii) assumes that the preparation of the
initial system state can be disentangled from the effect of the state transformation,
then we can either use the operator–sum representation or the unitary dilation theo-
rem. If there is no post–selection (i.e., conditioning on a measurement result r), the
state transformation is described by a CPTP map represented either by eqn (1.45) or
eqn (1.49). If there is conditioning, the state transformation is described by a CP map
represented either by eqn (1.46) or eqn (1.48). On average, all CP maps have to add
up to a CPTP map. Vice versa, every CPTP map can be decomposed into a set of CP
maps. Such a set is called an instrument.

Finally and for completeness, we mention one extension of the here introduced
framework. So far, we have assumed that the dimension d of the system space does
not change during the control operation, but for some applications it makes sense to
relax this requirement. These applications play a minor role in quantum stochastic
thermodynamics and the mathematical modifications we have to add only amount to
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a correct bookkeeping of the different input and output Hilbert spaces in the nota-
tion. Nevertheless, fhe final exercise shows a couple of neat examples of such control
operations, which are useful to keep in mind.

Exercise 1.12 Verify that the following maps are CPTP by finding an operator–sum repre-
sentation for them. Example 1: The ‘trace map’ is defined for any input state ρ by Cρ ≡ tr{ρ}.
This map is also often associated with ‘discarding a system’ as it destroys all the information
contained in a system and replaces it by a ‘trivial’ system living in the Hilbert space H = C
with the only possible density matrix ρC = 1. Example 2: Consider a bipartite system with
Hilbert space H1⊗H2. Show that the ‘partial trace map’ is CPTP: Cρ12 ≡ tr2{ρ12} = ρ1. Ex-
ample 3: In contrast to Example 1, one can also ‘create’ a system using a CPTP map, which
takes input states from the Hilbert space H = C, by defining Cρc ≡ ρ for any c ∈ C and some
fixed density matrix ρ. Note that, according to this example, ‘states’ in quantum mechanics
are CPTP maps. Example 4: An extension of Example 3 and in some sense the opposite of
Example 2 is the map which ‘adds’ a fixed state ρ2 to an input state ρ1: Cρ2ρ1 ≡ ρ1 ⊗ ρ2.

1.6 Classical Stochastic Processes

In the last sections we have learned about some fundamental aspects of open quan-
tum systems and quantum measurement theory. Before we put these two ingredients
together to define a quantum stochastic process, it is worthwhile to recapitulate the
definition of a classical stochastic process. Classical stochastic processes have found
widespread application in the natural and social sciences. They are commonly used to
describe a process in time, which is characterized by a random variable whose observa-
tion can be safely assumed not to change the process. It is obvious that this assumption
is no longer satisfied for quantum systems. Even classically, this assumption can be
violated. This leads to the much richer framework of classical causal models—a topic
which we briefly touch at the end of this section.

Let R denote some random variable characterizing the state of a system evolving
in time. Simple examples for R with relevance for (quantum) stochastic thermody-
namics include the position of a colloidal particle suspended in water (which yields
to Brownian motion), the number of electrons in a nanostructure such as a quantum
dot or the number of photons in a cavity, conformational states of a macromolecule
(e.g., folded or unfolded), among many others. In order to infer something about the
time evolution of the system, the experimenter measures the value of R at an ar-
bitrary set of times {t`}n`=0, where here and in the following we assume the order
0 = t0 < t1 < · · · < tn. The results of the measurement at time t` is denoted by r`. By
repeating the experiment many times, the experimenter can gather enough statistics to
construct (approximately) the joint probability distribution p(rn, tn; . . . ; r1, t1; r0, t0)
to observe r0 at time t0, r1 at time t1, and so on and so forth up to the last measure-
ment giving result rn at time tn. Since the subscript at the measurement result r` is in
one–to–one correspondence with the time t` of the measurement, we write for brevity

p(rn, . . . , r1, r0) ≡ p(rn, tn; . . . ; r1, t1; r0, t0). (1.51)

To be a valid probability distribution, p(rn, . . . , r1, r0) must satisfy

p(rn, . . . , r1, r0) ≥ 0,
∑
rn

· · ·
∑
r1

∑
r0

p(rn, . . . , r1, r0) = 1. (1.52)
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To save further space in the notation, we write the sequence of measurement results
in boldface as rn ≡ (rn, . . . , r1, r0). In this notation the content of eqn (1.52) reduces
to p(rn) ≥ 0 and

∑
rn
p(rn) = 1. Note that the sequence rn has n+ 1 entries (and not

n) since our first measurement happens by convention at time t0 (and not at t1).
The conditions (1.52) of positivity and normalization have to be satisfied by any

probability distribution. Therefore, p(rn) does not yet describe a stochastic process,
which has one important additional structure. To uncover this additional structure, we
need to look at the joint probability distribution p(rn, . . . , r`+1, r`−1, . . . , r0) to obtain
the results rn, . . . , r`+1, r`−1, . . . , r0 by measuring the system at times tn, . . . , t`+1,
t`−1, . . . , t0, i.e., at all times except of time t`, where we perform no measurement.
To emphasize this fact, we denote this probability by p(rn, . . . ,��r` , . . . , r0). Then, we
define a classical stochastic process by the requirement that

p(rn, . . . ,��r` , . . . , r0) =
∑
r`

p(rn, . . . , r`, . . . , r0) (1.53)

for all ` ∈ {0, 1, . . . , n}. This is known as the Kolmogorov consistency condition
and it tells us that not measuring the observable R at some point in time is equivalent
to measuring it followed by marginalizing about the measurement result. Therefore,
the joint probabilities of a classical stochastic process form a hierarchy, where the
(n+ 1)–time joint probability p(rn, . . . , r1, r0) contains all the information about the
k–time probabilities (with k < n+1) obtained from measuring the system at any subset
of the times {tn, . . . , t1, t0}. Furthermore, an important mathematical result known as
the Daniell–Kolmogorov extension theorem says that we can also go the reverse way:
whenever we have a hierarchy of n–time joint probabilities satisfying the Kolmogorov
consistency condition, then they can be constructed as marginals of N–time joint
probabilities with N > n, which also satisfy the consistency condition. The important
point is here that this even holds in the limit of n → ∞. The Daniell–Kolmogorov
extension theorem therefore provides a bridge between experimental reality (where
any measurement statistics is always finite and described with an n < ∞) and its
theoretical description (which often uses continuous–time dynamics in form of, e.g.,
stochastic differential equations, which assume n→∞).

It is clear that the Kolmogorov consistency condition is in general not satisfied for
quantum systems. It is, however, noteworthy that even for classical systems eqn (1.53)
can be broken. This can happen simply for the reason that the measurement of a clas-
sical system can be disturbing as well. Another reason is an experimenter choosing to
actively break the consistency condition. Examples of the latter kind include the use of
feedback control, where an external agent manipulates the dynamics of a system based
on the so far available information (say, based on rk up to some time tk). The future
probabilities to observe rn (n > k) are then in general different from the situation
where the external agent had not observed the system before (and consequently, had
not applied any feedback control). Another example is a clinical trial where the health
of patients is monitored at regular intervals and where the process can be actively
changed by giving drugs. The health of the patients in the future then depends on the
question whether their health was monitored before or not (and consequently, whether
they received drugs or not).
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These examples show that the theory of classical stochastic processes breaks down
if an external agent intervenes the process. The mathematical language appropriate
for such kind of situations is the theory of classical causal models. Without going into
its details, we point out that causal models can distinguish between causation and
correlation, whereas classical stochastic processes cannot. Indeed, classical stochastic
processes allow to quantify correlations between two random variables, say X and Y ,
but the consistency condition forbids us to infer whether X is a cause of Y , Y a cause of
X, or whether there is no causal relation between X and Y and their correlation is due
to another common cause Z. In order to infer causal relationships, it is important that
we can change the process and thus violate the consistency condition, for instance, by
looking at the behaviour of Y after forcing X to take on a certain value. The following
example makes this qualitative reasoning quantitative.

Exercise 1.13 We consider three binary random variables S, B and C with values s, b
and c. On a given day S describes whether the sun is shining (s = 1) or not (s = 0), B
describes whether the number of sunburns is high (b = 1) or low (b = 0) and C describes
whether the number of ice cream sales is high (c = 1) or low (c = 0). We assume the
notion of ‘high’/‘low’ to be chosen according to some reasonable treshhold. We further set
the conditional probabilities to be p(b = 1|s = 1) = p(c = 1|s = 1) = p(b = 0|s = 0) = p(c =
0|s = 0) = λ with λ ∈ [1/2, 1], e.g., λ = 1 implies that the number of sunburns is always high
if the sun is shining. By conservation of probability, p(b = 0|s = 1) = p(c = 0|s = 1) = p(b =
1|s = 0) = p(c = 1|s = 0) = 1 − λ. Furthermore, we assume the probability for a sunny day
to be p(s = 1) = 1/2, which implies that the sun is not shining with the same probability
p(s = 0) = 1/2. Now, first confirm that B and C are correlated unless λ = 1/2. This can be
done in several ways, for instance, by computing the mutual information, which we introduce
in Appendix A in detail, between B and C:

IB:C ≡
∑
b,c

p(b, c) ln
p(b, c)

p(b)p(c)
= ln 2− SSh(2λ− 2λ2). (1.54)

Here, SSh(p) ≡ −p ln p−(1−p) ln(1−p) denotes the binary Shannon entropy. Verify eqn (1.54)
by using p(b, c) =

∑
s p(b, c, s) =

∑
s p(b|s)p(c|s)p(s). Show that IB:C = 0 (no correlations)

implies λ = 1/2 and IB:C = ln 2 (maximal correlations) implies λ = 1. Thus, while B and
C are in general correlated, they are not causally related as demonstrated below. Does this
sound plausible to you?

Next, we turn to the correlations between S and B. Confirm that IB:S = ln 2 − SSh(λ)
and find the values of λ for which S and B are maximally correlated/uncorrelated.

Finally, we strongly believe that S is the cause of B (and also of C), i.e., the shining sun
triggers sun burns (and ice cream sales). But how can we make this intuition rigorous?

Assume that we have an external mechanism, which can change whether the sun is shining
or not (which seems unrealistic at first sight, but we come back to it below). We therefore
introduce an additional intervention variable IS (not to be mixed up with the mutual in-
formation), which labels the following three actions i: Do nothing, i.e., leave the sun as it
is (i = idle), make the sun shining (i = 1), or block sun shine (i = 0). Now, consider the
conditional probability p(b|s, i) for sun burns given sunshine s and intervention i. For i = idle
we set p(b|s, idle) = p(b|s) as defined above. Furthermore, we assume p(b|s, i = 1) = λ and
p(b|s, i = 0) = 1− λ independent of s because i ∈ {0, 1} overwrites the natural value of s to
be identical to i. Next, confirm that the mutual information between B and IS is

IB:IS =
∑
b,i

p(b, i) ln
p(b, i)

p(b)p(i)
= SSh[p(b)]− [1− p(i = idle)]SSh(λ)− p(i = idle) ln 2, (1.55)
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where the marginal probability p(i) that we perform a certain intervention is assumed to be
controllable in an experiment. We now define that S is a cause of B if there are correlations
between IS and B. Confirm that there are no correlations between B and IS , i.e., S is not
the cause of B, if one of the following two cases happen: either p(i = idle) = 1, which
corresponds to the case that we do not perform any intervention and hence, cannot test for
causality, or λ = 1/2, which implies that there are no correlations between B and S at first
place. Furthermore, confirm that in general p(b, s) 6=

∑
i p(b, s, i), where p(b, s) = p(b|s)p(s)

is the joint probability from the beginning obtained without interventions and p(b, s, i) =
p(b|s, i)p(s)p(i) is the joint probability with interventions. Thus, the Kolmogorov consistency
condition (1.53) is broken in general. Show that the consistency condition is obeyed if and
only if p(i = idle) = 1 or p(i = 0) = p(i = 1). Can you see why? Of course, we could also
replace B by C above and find that sunshine causes a high number of ice cream sales.

Finally, let us return to our assumption that we can change the sunlight by an external
intervention. Indeed, such a mechanism is not easy to construct for a human. But to distin-
guish causation and correlation, it is not necessary that humans perform the intervention: it
could be also done by nature, for instance, due to a solar eclipse. Important is only that we
can fix the intervention variable independent of the other variables in the model.

1.7 Quantum Stochastic Processes

In this section we introduce the notion of a quantum stochastic process describing the
response of an open quantum system to the most general interventions we can perform
on it. This generality comes at the price of a high level of abstractness, even though
it might help to keep in mind that much of what follows below ‘merely’ presents
convenient terminology and notation. We proceed by first applying the notion of a
classical stochastic process directly to quantum systems. Afterwards, we show that
the idea can be fruitfully generalized to define a quantum stochastic process. Then, we
show how to reconstruct a quantum stochastic processes experimentally and we finish
by exploring further mathematical consequences of this formalism.

Quantum statistics of a projectively measured system

Even though quantum measurements are in general disturbing, the joint probability
p(rn) in eqn (1.51) remains a well–defined object in quantum mechanics. Experi-
mentally, it describes the probability to obtain the results rn = (rn, . . . , r1, r0) after
performing projective measurements of the quantum mechanical observable R with
eigenvalues labeled by r at times 0 = t0 < t1 < · · · < tn. Theoretically, the probability
is computed for an isolated quantum system as

p(rn) = tr{Π(rn)U(tn, tn−1) · · ·Π(r1)U(t1, 0)Π(r0)ρ(0)

×Π(r0)U†(t1, 0)Π(r1) · · ·U†(tn, tn−1)Π(rn)}.
(1.56)

Here, ρ(0) denotes the initial state of the quantum system, followed by a projec-
tive measurement Π(r0)ρ(0)Π(r0) with result r0, followed by a unitary time evo-
lution U(t1, 0)Π(r0)ρ(0)Π(r0)U†(t1, 0) from 0 to t1, and so on and so forth up to
time tn. Since the expression (1.56) looks quite cumbersome, we introduce the su-
peroperators P(r`) and U(t`, tk) defined via their action P(r`)ρ ≡ Π(r`)ρΠ(r`) and
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U(t`, tk)ρ = U(t`, tk)ρU†(t`, tk) on an arbitrary state ρ. Then, eqn (1.56) can be ex-
pressed more compactly as

p(rn) = tr{P(rn)U(tn, tn−1) · · · P(r1)U(t1, 0)P(r0)ρ(0)}. (1.57)

The following exercise shows that these probabilities are well–defined, but in general
break the Kolmogorov consistency condition (1.53).

Exercise 1.14 Confirm that p(rn) satisfies eqn (1.52) but in general not eqn (1.53).

Next, we return to the system–bath paradigm of Section 1.2. The spirit of system–
bath theories was to view the open system S as the accessible part of the ‘universe,’
which can be easily measured and manipulated. In contrast, the bath B represents
the inaccessible part of the universe about which we have only limited information.
Following this spirit, we adapt eqn (1.56) to the case of open quantum systems by
restricting R to be a system observable RS . Then, the joint probability p(rn) is

p(rn) = trSB{[PS(rn)⊗ IB ]USB(tn, tn−1) · · ·
× [PS(r1)⊗ IB ]USB(t1, 0)[PS(r0)⊗ IB ]ρSB(0)}. (1.58)

Here, ρSB(0) denotes the initial system–bath state, USB(t`, tk) the unitary time evolu-
tion from tk to t` generated by some system–bath Hamiltonian and [PS(r`)⊗IB ]ρSB =
[ΠS(r`)⊗IB ]ρSB [ΠS(r`)⊗IB ] the local projective measurement of the system. To save
space, we drop all identity operations in the following. In addition, we understand that
all superoperators without a subscript act only on the system, e.g., we write P(r`) in-
stead of PS(r`)⊗ IB . Then, eqn (1.58) becomes

p(rn) = trSB{P(rn)USB(tn, tn−1) · · · P(r1)USB(t1, 0)P(r0)ρSB(0)}. (1.59)

In fact, this notation is still not short enough for our purposes. Instead, we are
aiming at a notation, which explicitly distinguishes between the experimentally con-
trollable part, which is here represented by the projective measurements P(r`) we are
performing on the system, and the uncontrollable or inaccessible part of the evolution
encoded in the unitary system–bath evolution USB(t`, tk), which is fixed in a given
experimental setup. Therefore, we define

T[P(rn), . . . ,P(r1),P(r0)] ≡
trB{P(rn)USB(tn, tn−1) · · · P(r1)USB(t1, 0)P(r0)ρSB(0)} (1.60)

such that eqn (1.59) simply becomes p(rn) = trS{T[P(rn), . . . ,P(r1),P(r0)]}.

The process tensor and quantum stochastic processes

In contrast to the classical case, projective measurements of a quantum system gener-
ically disturb the dynamics. Furthermore, in Sections 1.4 and 1.5 we have learned that
there is a much larger class of control operations that we can implement in a lab, not
only projective measurements. This motivates us to extend the definition (1.60) to
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include arbitrary instruments applied at times t`, which are characterized by a set of
CP maps {C(r`)} adding up to a CPTP map C` ≡

∑
r`
C(r`). Thus, we define

T[C(rn), . . . , C(r1), C(r0)] ≡
trB{C(rn)USB(tn, tn−1) · · · C(r1)USB(t1, t0)C(r0)ρSB(0)}, (1.61)

and call T the process tensor, which forms the central object for our studies in the
remainder of this chapter. The probability to get the results rn = (rn, . . . , r1, r0), i.e.,
the probability for applying the CP maps C(rn), . . . , C(r1), C(r0), is

p(rn) = trS{T[C(rn), . . . , C(r1), C(r0)]}, (1.62)

which generalizes the result for a single measurement, eqn (1.35), to multiple times.
The output of the process tensor is the non–normalized system state at time tn after
n+1 control operations conditioned on the results rn. In agreement with our previous
notation for a single control operation, we denote this state as

ρ̃S(tn|rn) ≡ T[C(rn), . . . , C(r1), C(r0)]. (1.63)

We have p(rn) = trS{ρ̃S(tn|rn)}.
The process tensor is the most abstract and complex mathematical object we meet

in this book. If one calls C(r`) a superoperator, then T is a super–superoperator and,
although we seldomly attempt to compute it explicitly, it is our guiding theoretical
framework in the following. Once we have appreciated its vast generality, it allows us
to view the structure of many upcoming problems with greater clarity.

The process tensor encodes in an abstract way all what can happen to an open
quantum system by ‘interrogating’ it at an arbitrary set of discrete times with in-
struments {C(r`)}, which act only on the system degrees of freedom. Thus, all the
information we can locally obtain about the evolution of an open quantum system is
contained in the process tensor. This neatly extends the idea of a classical stochas-
tic process, where one also assumes the ability to perfectly measure the system at
arbitrary times, to the quantum regime. Hence, we make the following postulate:

Quantum stochastic process. Every process tensor describes a quantum stochas-
tic process. Vice versa, every quantum stochastic process can be described by a process
tensor.

Therefore, both, a classical and a quantum stochastic processes have in common
the idea to explicitly include the control operations applied in an experiment into the
theoretical description, but a quantum stochastic process allows for a larger class of
interventions beyond non–disturbing projective measurements. Throughout this book,
we call a theoretical description, which explicitly accounts for any interventions per-
formed in an experiment, operational. The rest of this section explains further prop-
erties of the process tensor (or a quantum stochastic process), which is pictorially
represented in Fig. 1.5. Indeed, after having emphasized its operational character, it
seems worth to first wonder how to experimentally access the process tensor.
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Fig. 1.5 Sketch of the process tensor with time running from left to right. Quantum sys-

tems (such as S or B) are marked with a line. The initial state is drawn as a triangle and

state transformations are portrayed with boxes. Thus, the shaded red region presents all the

information encoded in the process tensor, whereas the inputs or arguments of the process

tensor are the interventions C(r`) shaded in blue. For notational simplicity we dropped the

time–dependence of the system–bath unitary USB .

Experimental reconstruction of the process tensor

To experimentally reconstruct the process tensor, it is useful to note first that it really
is a tensor, i.e., a multi–linear object with respect to its arguments. If this is not yet
evident, the next exercise asks you to verify it directly. Explicit representations of the
process tensor are constructed in Appendix B.3.

Exercise 1.15 Show based on definition (1.61) that for every ` ∈ {0, 1, . . . , n}

T[An, . . . , a`A` + b`B`, . . . ,A0] = a`T[An, . . . ,A`, . . . ,A0]

+ b`T[An, . . . ,B`, . . . ,A0],
(1.64)

where A0, . . . ,A`, . . . ,An and B` are arbitrary maps and a`, b` ∈ C two arbitrary complex
numbers. Therefore, the process tensor is linear in all its entries. But on which space is the
process tensor acting?

For this purpose consider a quantum system with Hilbert space HS of dimension d =
dimHS . We denote the space of all linear maps (or operators) acting on HS by L(HS).
L(HS) is itself a vector (or Hilbert) space of dimension d2. Examples for objects living in
L(HS) are the density matrix ρS and the Hamiltonian HS . Furthermore, we denote the
space of all linear maps (or superoperators) acting on L(HS) by L(L(HS)). This again forms
a Hilbert space, now of dimension d4, and examples include all the CP and CPTP maps
we have studied above such as C(r`). The process tensor therefore maps objects from the
(n+ 1)–fold tensor product space of L(L(HS)) to the state space L(HS), symbolically:

T : L(L(HS))⊗ · · · ⊗ L(L(HS))︸ ︷︷ ︸
(n+1) times

→ L(HS). (1.65)

Deduce that the dimension of the input space of T is d4(n+1).

The basic idea to reconstruct the process tensor experimentally is similar to the case
of a classical stochastic process, where one constructs a histogram of joint probabilities
with respect to all possible measurement results. Now, however, we have to construct a
‘histogram’ of density matrices with respect to all kinds of possible interventions. As a
preliminary step the next exercise first reviews the basics of quantum state tomography
before we turn to the more general case of quantum process tomography.
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Exercise 1.16 Quantum state tomography describes the experimental procedure to de-
termine an unknown quantum state ρ. To approach it, we start with an unknown state of a
classical two–level system (a ‘bit’), here denoted as ρbit = p|0〉〈0|+(1−p)|1〉〈1| with p ∈ [0, 1]
unknown. Clearly, to determine p we simply need sufficiently many copies of ρbit and measure
its state many times in the basis {|0〉, |1〉}. The frequency of measurement outcomes m0/M
and m1/M (with M the total number of measurements) then approximates p and 1− p.

Now, suppose that you have sufficiently many copies of a qubit in the state ρ = p|0〉〈0|+
(1 − p)|1〉〈1| + c|0〉〈1| + c∗|1〉〈0| at your disposal with unknown p ∈ [0, 1] and c ∈ C, which
obeys |c|2 ≤ p(1−p) (show that this follows from the positivity of ρ). Now, devise a measure-
ment strategy to determine ρ. Hint: There are many solutions. One convenient approach is
offered by the Bloch sphere representation ρ = (I+r ·σ)/2 with the vector of Pauli matrices
σ = (σx, σy, σz) and the Bloch vector r = tr{σρ} obeying r2

x + r2
y + r2

z ≤ 1. Show also
that it is sufficient to know the three probabilities px=1 = tr{|1〉〈1|xρ}, py=1 = tr{|1〉〈1|yρ}
and pz=1 = tr{|1〉〈1|zρ}, where |1〉x,y,z is the eigenvector of σx,y,z with eigenvalue +1, to
determine ρ completely. A set of projectors such as {|1〉〈1|x, |1〉〈1|y, |1〉〈1|z} whose outcome
probabilities determine the entire state of a quantum system are also known as informa-
tionally complete.

Despite some similarity in the quantum and classical case, there are also differences.
Confirm that, given that you know that the classical bit is in a pure state, there is only a
single measurement needed to determine its state. Convince yourself of the fact that this no
longer holds true for a qubit.

Do you see how to generalize the above procedure to arbitrary d–dimensional quantum
systems? In this case a convenient parametrization of ρ could be the generalized Bloch rep-
resentation

ρ =
1

d

(
I +

√
d(d− 1)

2
r ·Λ

)
. (1.66)

Here, the generalized Bloch vector r ∈ Rd
2−1 obeys

∑
i r

2
i ≤ 1 and Λ denotes a vector of

d2 − 1 traceless Hermitian matrices Λi obeying tr{ΛiΛj} = 2δij .

Given that we now know how to tomographically reconstruct a quantum state, how
can we perform quantum process tomography of the full process tensor? Luckily,
since the process tensor is multi–linear, it suffices to know its elements with respect
to a basis of quantum operation performed at different times. For a single time, one
such basis is offered by the quantum operations

BαβρS ≡ Pαtr{ΠβρS}. (1.67)

Here, the set {Πβ}β presents an informationally complete set of projectors (see last
exercise). Thus, {Πβ}β has d2 − 1 elements to which we add one more element such
that we have a basis for the vector space of complex d × d matrices. Furthermore,
{Pα}α denotes a set of d2 independent quantum states, which span the space L(HS).
If we fix a given basis {|n〉} of HS , then one convenient parametrization is given
by the double index α ≡ (m,n) such that Pα = |ψm,n〉〈ψm,n| with |ψn,n〉 = |n〉,
|ψm,n〉 = (|m〉+ |n〉)/

√
2 for m > n and |ψm,n〉 = (i|m〉+ |n〉)/

√
2 for m < n.

Exercise 1.17 Confirm that the above defined set of states Pα linearly spans the entire
space of d× d matrices.
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Physically, the control operations (1.67) correspond to measuring the quantum
state and obtaining (probabilistically) the result β followed by repreparing the system
in the state Pα. Every map C can be linearly expanded in that basis

C =
∑
α,β

cαβBαβ (1.68)

with in general complex coefficients cαβ ∈ C. If C is a CP or CPTP map, even more
can be said about the coefficients as summarized in the next exercise.

Exercise 1.18 First, show that, if C preserves Hermiticity, then the coefficients cαβ ∈ R are
real. Next, show that, if the map C is trace–preserving, then

∑
α cαβ = 1.

Now, all what we have to do in order to reconstruct the full process tensor is to
measure the quantum system at times t`, ` ∈ {0, 1, . . . , n}, in the informationally com-
plete basis {Πβ`} followed by randomly repreparing the state in one of the Pα` ’s after
the measurement. By repeating this procedure many times, we obtain the elemen-
tary process tensors T[Bαnβn , . . . ,Bα1β1 ,Bα0β0 ]. Given them, the action of the process
tensor on any set of instruments can be reconstructed by linear combination

T[C(rn), . . . , C(r1), C(r0)]

=
∑
αn,βn

· · ·
∑
α1,β1

∑
α0,β0

cαnβn · · · cα1β1cα0β0T[Bαnβn , . . . ,Bα1β1 ,Bα0β0 ] (1.69)

for some coefficients cα`β` ∈ R. In fact, we can now recognize that the sequence of
interventions C(rn), . . . , C(r1), C(r0) forms only a special subclass of all conceivable
interventions, namely those that are decorrelated. The next exercise explains this.

Exercise 1.19 Recall eqn (1.65), which shows that the process tensor can be seen as a map
acting on

⊗n
i=0 L(L(HS)). Using the basis (1.67), an arbitrary element Cn:0 of that space

can be written as

Cn:0 =
∑
αn,βn

· · ·
∑
α1,β1

∑
α0,β0

cαnβn,...,α1β1,α0β0Bαnβn ⊗ · · · ⊗ Bα1β1 ⊗ Bα0β0 , (1.70)

where the coefficients cαnβn,...,α1β1,α0β0 need not to factor as in eqn (1.69). Confirm that the
element Cn:0(rn) corresponding to applying a sequence of control operations C(rn), . . . , C(r0)
can be written as a tensor product in that space: Cn:0(rn) = C(rn) ⊗ · · · ⊗ C(r0). This can
be called a decorrelated control operation or intervention.

Equation (1.70) therefore tells us that more general, correlated control operations
Cn:0(rn) are possible. In this case we denote the process tensor as T[Cn:0(rn)] =
ρ̃S(tn|rn), where ρ̃S(tn|rn) still denotes the non–normalized system state at time tn
resulting from the action of some correlated control operation happening with prob-
ability p(rn) = trS{ρ̃S(tn|rn)}. Examples for correlated control operations are, for
instance, classical feedback control or conditioning of the dynamics. To be specific,
let P(r0) denote a projective measurement of some system observable at time t0 giv-
ing result r0. Let C1(r0) denote some CPTP map at time t1, which depends on the
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previously recorded measurement result r0. The corresponding control operation is
C1:0(r0) = C1(r0) ⊗ P(r0), which is still decorrelated. However, the average effect
of the control operation is given by C1:0 =

∑
r0
C1(r0) ⊗ P(r0), which is correlated.

Correlated control operations therefore allow us to treat all conceivable scenarios of
feedback control within the process tensor framework.

To conclude, the above procedure shows how to experimentally reconstruct the
process tensor. This reconstruction is based on two assumptions. First, the experi-
mentalist must be able locally measure and manipulate the open quantum system.
This does not necessarily mean that one must be able to implement the specific con-
trol operations (1.67), any other basis of maps suffices as well. Second, the control
operations were assumed to happen instantaneously, similar to the measurements in a
classical stochastic process. In practice, this statement translates into the requirement
that the time scales of the environmentally induced system evolution, determined by
USB , must be long compared to the time it takes to implement the control operation.
This is required in order to disentangle the effect of the environment from the effect
of the external controller. Even if these requirements are satisfied, experimentally re-
constructing the process tensor remains a formidable challenge since the number of
parameters we have to estimate grows exponentially as d4n with the number n of
time steps (for a classical stochastic process, it grows as dn). Luckily, for one theo-
retically and experimentally important case of applications, the process tensor can be
constructed in a simple manner. This case is described by quantum Markov processes,
which we will introduce in the next section. Before turning to them, we list three
further relevant properties of the process tensor.

Further properties of the process tensor

In Section 1.6 we have seen that the joint probabilities of a classical stochastic pro-
cess form a hierarchy. The same is also true for the process tensor, which satisfies a
containment property as explored in the next exercise. We remark that this contain-
ment property is the basis to show that there exists a generalized Daniell–Kolmogorov
extension theorem also for quantum stochastic processes.

Exercise 1.20 The process tensor T was defined on the set of times {t0, t1, . . . , tn}. Consider
any subset of times T ⊂ {t0, t1, . . . , tn}. Show that the process tensor TT defined on this subset
of times is contained in the original T. By this we mean that all probabilities predictable from
TT can be also recovered from T. Thus, process tensors TT1 , . . . ,TTN for discrete sets of times
T1 ⊂ · · · ⊂ TN form a hierarchy with TT` containing TTk for ` ≥ k.

Furthermore, one can extend the operator–sum representation and the unitary
dilation theorem to the process tensor, but we are not going to write down the corre-
sponding operator–sum representation theorem here and the unitary dilation theorem
of the process tensor is only pictorially presented in Fig. 1.6. Mathematically, this is
possible because the process tensor satisfies requirements similar to those imposed on
a single–time control operation in Section 1.5 [requirements (i’), (ii) and (iii)].

First, the process tensor preserves complete positivity [requirement (i’)] in the
following sense. Let ρSA be an arbitrary initial system–ancilla state and let CSA

n:0(rn)
be any (n+1)–time control operation acting on the system–ancilla state. We can then
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Fig. 1.6 Similar to the unitary dilation theorem, also an arbitrary correlated control oper-

ation Cn:0(rn) can be simulated by introducing a sufficiently large ancilla state ρA(0), which

is initially decorrelated from the system and usally contains multiple ancillas (represented

by the different lines in the figure) and which interacts unitarily with the system through

USA. Note that we are a bit sloppy here and use the same symbol USA for in general differ-

ent system–ancilla unitaries. Finally, the joint ancilla state is measured using some projector

ΠA(rn). The blue and red object together represent the unitary dilation of the process.

define an extended process tensor TS ⊗ IA as in eqn (1.61) by replacing ρSB(0) by
ρSBA(0) and USB(t`, tk) by USB(t`, tk)⊗IA. Thus, TS equals T as defined in eqn (1.69)
and IA is the ‘identity process.’ It then follows that the output state ρ̃SA(tn|rn) =
TS ⊗ IA(CSA

n:0) ≥ 0 is always positive.
Second, the trace non–increasing property (ii) is clearly satisfied for the process

tensor and it also satisfies a modified requirement (iii) of linearity by recalling that
the process tensor is linear with respect to the applied interventions. In fact, those
interventions are the objects, which we can freely control in an experiment, in contrast
to the initial system state ρS(0). This resolves the conundrum of Exercise 1.11.

Exercise 1.21 The process tensor does not depend linearly on the initial system state ρS(0)
in general. However, show that it does for an initial state of the form ρSB(0) = ρS(0)⊗ρB(0).
Then, convince yourself that in this case the first control operation C(r0) becomes redundant
and one can define the process tensor as T[C(rn), . . . , C(r1), ρS(0)], where ρS(0) is now taken
arbitrary. Beyond that case, the present approach provides an operational resolution to the
conundrum of Exercise 1.11 by realizing that quantum dynamics is linear with respect to the
state preparation C(r0) of an experiment, but not with respect to the initial system state.

The final point we want to make is that the process tensor can be used to compute
correlation functions of the form

〈A(t)B(0)〉 = trSB{AUSB(t, 0)BρSB(0)U†SB(t, 0)}. (1.71)

Here, A and B are two arbitrary system observables. The reader is asked to explicitly
verify this in the next exercise, which concludes this section.

Exercise 1.22 We write the spectral decomposition of A as A =
∑
a a|a〉〈a|. Since
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〈A(t)B(0)〉 =
∑
a

atrSB{|a〉〈a|USB(t, 0)BρSB(0)U†SB(t, 0)}, (1.72)

it is clear that the final control operation at time t1 has to be a projective measurement of
the observable A. We therefore write 〈A(t)B(0)〉 =

∑
a atrS{T[P(a),B0]}, where T[·, ·] is the

two–time process tensor defined at times 0 and t and the control operation B0 is defined by
B0ρSB(0) = BρSB(0). Unfortunately, B0 is not CP and does not even preserve Hermiticity.
Therefore, it cannot directly be implemented in a lab using a suitably tailored system–ancilla
interaction. Nevertheless, by linearity we can find a set of experimentally implementable CP
maps Bαβ with coefficients cαβ such that B0 =

∑
α,β cαβBαβ , cf. eqn (1.68). To see this

explicitly, we use B =
∑
b b|b〉〈b| and I =

∑
b |b〉〈b| to write

B0ρSB(t0) = BρSB(t0) =
∑
b

b|b〉〈b|ρSB
∑
b′

|b′〉〈b′| =
∑
b,b′

b|b〉〈b′|trS{|b′〉〈b|ρSB(0)}. (1.73)

Now, this looks already close to a linear combination of the elementary control opera-
tions (1.67) with the difference that the elements |b〉〈b′| in general do not belong to the
sets of {Pα}α and {Πβ}β . However, as Exercise 1.17 has shown, we can always write

|b〉〈b′| =
∑
α

cbb
′

α Pα, |b′〉〈b| =
∑
β

c̃b
′b
β Πβ (1.74)

for some (in general complex) coefficients cbb
′

α and c̃b
′b
β . Thus, in terms of the elementary

control operations (1.67) we have

〈A(t)B(0)〉 =
∑

a,b,b′,α,β

abcbb
′

α c̃b
′b
β trS{T[P(a),Bαβ ]}. (1.75)

Now, the process T[P(a),Bαβ ] is implementable in a lab using only local measurements and

state preparations. Furthermore, the coefficient abcbb
′

α c̃b
′b
β is known. Hence, the correlation

function 〈A(t)B(0)〉 is measurable and its value is encoded in the process tensor.
Readers, who had problems to follow the steps above, are asked to explicitly verify

them for a qubit and the linear map B0ρ = σzρ using a basis of your choice for the
elementary control operations Bαβρ = Pαtr{Πβρ}. Furthermore, convince yourself of the
fact that the above statement can be extended to arbitary multi–time correlation functions
〈An(tn) . . . A1(t1)A0(t0)〉 as long as all A` are system observables.

1.8 Quantum Markov Processes and Dynamical Maps

Markov processes, may they be quantum or classical in nature, play an important role
in physics. In part, this seems to be caused by the fact that they considerably simplify
the life of a theoretician and typically allow for at least some analytical progress
in the description. Also in this book we will encounter Markov processes, albeit a
considerable part of this book is devoted to showing that all our main results continue
to hold for non–Markovian processes. Colloquially, Markov processes are associated
with memoryless processes. This means that the environment quickly forgets the state
of the system in the past such that the system’s future evolution is only influenced by
its current state. We now make this reasoning rigorous.
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To approach the problem, we first of all introduce the notion of a causal break.
A causal break is an intervention, which reprepares the system in a state, which is
independent of all past interventions. They are in general written as

BαβρS ≡ σ(α)
S trS{PβρS}. (1.76)

Here, Pβ is an arbitrary element of a POVM and σ
(α)
S an arbitrary system density

matrix. Thus, a causal break describes an intervention, where we read out the state of
the system in an arbitary way (remember that Pβ = IS is a legitimate choice too), then

discard the system state, and finally prepare a fresh state σ
(α)
S , which is independent of

the previous system state or the result of the measurement Pβ . This ensures that σ
(α)
S

can have no memory about the past. Note that the operations introduced in eqn (1.67)
are causal breaks and hence, causal breaks can be used as a basis to span the space of
linear maps.

Furthermore, we introduce the following notation to denote the normalized system
state after an arbitrary sequence C(rn), . . . , C(r1), C(r0) of interventions:

ρn[C(rn), . . . , C(r1), C(r0)] ≡ ρ̃S(tn|rn)

p(rn)
=

T[C(rn), . . . , C(r1), C(r0)]

trS{T[C(rn), . . . , C(r1), C(r0)]} . (1.77)

We now define:

Quantum Markov process. A quantum stochastic process is Markovian if the nor-
malized system state at time t` after a causal break (1.76) at time tk < t` depends only

on the input state σ
(αk)
S for any set of previous interventions C(rk−1), . . . , C(r0). In

equations,

ρ`[Bαkβk , C(rk−1), . . . , C(r0)] = ρ`[σ
(αk)
S ]. (1.78)

This definition captures the idea that everything which has happened to the system
in the past does not influence its future after any causal connection at the system level
is cut. Thus, if eqn (1.78) is violated, this must be due to the fact that the environment
kept some memory about what has happend to the system in the past. To get familiar
with this definition, it is best to confirm an intuitve result such as the following.

Exercise 1.23 Verify that an isolated (i.e., unitarily evolving) system is Markovian.

The following important result, which the reader is asked to prove in an exercise
below, shows that quantum Markov processes have a particularly simple mathematical
structure.

Factorization of the process tensor. For a Markovian process the process tensor
‘factorizes’:

T[C(rn), . . . , C(r0)] = C(rn)E(tn, tn−1) . . . E(t1, 0)C(r0)ρS(0). (1.79)

Here, ρS(0) = trB{ρSB(0)} is the initial system state and E(t`, tk) are CPTP maps
independent of C(rn), . . . , C(r0).
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The physical meaning of the CPTP maps E(t`, tk) is to propagate the system state
forward in time. This becomes transparent by considering the process tensor obtained
by applying the identity maps restricted to the subset of times {tk, 0} with k > 0:

ρS(tk) = Tk,0[Ik, I0] = E(tk, 0)ρS(0). (1.80)

Furthermore, we can use the interventions C(rk) to prepare arbitrary system states
at any time tk. Since eqn (1.79) holds for all interventions and all subsets of times
t` > tk > tj > t0, we infer that the CPTP maps obey the composition rule

E(t`, tj) = E(t`, tk)E(tk, tj). (1.81)

In fact, whenever it is possible to define a set of cptp maps {E(tk, tj)} for all times
tk > tj that propagate the system state ρ(tk) = E(tk, tj)ρ(tj) and obey eqn (1.81) one
calls the dynamics CP divisible. Note that a dynamics can be non-Markovian but
CP divisible because the notion of CP divisibility does not rely on interventions.

Note that a CPTP map E(tk, 0) propagating the system state forward in time can
be always defined if the system–bath state at time t0 factorizes. Then, we can write

ρS(tk) = trB{USB(tk, 0)ρS(0)⊗ ρB(0)U†SB(tk, 0)} ≡ E(tk, 0)ρS(0) (1.82)

and by virtue of the unitary dilation theorem the map E(tk, 0) is CPTP. Markovianity
precisely says that we can always write ρS(t`) = E(t`, tk)ρS(tk) for all pairs of times
t` > tk with E(t`, tk) CPTP and independent of what has happened in the past. Since
the maps E(t`, tk) play such an important role for the evolution of open quantum
systems, they are called dynamical maps. In quantum information theory they are
also often called channels to signify that they can be used to communicate a quantum
state from one laboratory to another. That is to say, the CPTP maps E cannot only
be used to propagate the system state forward in time, but also forward in space–
time. In non–relativistic quantum mechanics E describes therefore the most general
time evolution obeying the properties (i’), (ii) and (iii) of Section 1.5. The proof that
Markov processes factorize is relegated to an exercise.

Exercise 1.24 First, show that, if the process tensor factorizes as in eqn (1.79), then the
process is Markovian. Conversely, let us assume that the process is Markovian. Consider
first an elementary process tensor obtained by applying only causal breaks. Note that the
action of a causal breaks implies that the system–bath state becomes decorrelated: BαβρSB =

σ
(α)
S ⊗ trS{PβρSB}. We can therefore always write

T[Bαnβn , . . . ,Bα1β1 ,Bα0β0 ] = (1.83)

σ
(αn)
S trS{Pβn Ẽ(tn, tn−1)σ

(αn−1)

S } . . . trS{Pβ1 Ẽ(t1, t0)σ
(α0)
S }trS{Pβ0ρS(t0)}.

Here, the Ẽ(t`, tk) are CPTP maps which can be reconstructed by quantum process to-

mography by preparing a set of basis states {ρ(αk)
S } and by measuring an information-

ally complete set of POVMs {Pβ`}. In general, however, the maps Ẽ(t`, tk) depend on all
previous interventions βk, αk−1, βk−1, . . . , α0, β0 because the reduced state of the bath at
time tk carries information about the history of the system. Therefore, the maps Ẽ(t`, tk)
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are usually not very helpful. However, for Markovian processes the claim is precisely that
these maps are independent of the history of the system. Prove this! Hint: It might be
useful to try a proof by contradiction, i.e., assume that there are two different histories
h ≡ (βk, αk−1, βk−1, . . . , α0, β0) and h′ ≡ (β′k, α

′
k−1, β

′
k−1, . . . , α

′
0, β
′
0) of causal breaks with

h 6= h′ such that Ẽ(t`, tk) ≡ Ẽ(t`, tk|h) 6= Ẽ(t`, tk|h′) ≡ Ẽ ′(t`, tk). Show that this leads to a
contradiction for a Markov process.

It is important to remark that the Markov property is purely defined in terms of
the process tensor. Hence, it is a property inherent to the process itself. In particular,
the question whether the process is Markovian or not is independent of the control
operations applied to the system. This holds even true for correlated control oper-
ations, for instance, if we apply feedback control at time tn depending on previous
measurement results rk (k < n). The fact that the environment for a Markov process
does not keep any memory about previous interventions is not changed by the decision
of an external agent to keep a memory about them. The connection between classical
and quantum Markov processes is explored in the next section.

1.9 Classical Quantum Stochastic Processes

In the final section of this chapter we connect the notion of quantum stochastic pro-
cesses to classical stochastic processes. We unravel that quantum stochastic processes
look classical in some measurement basis whenever coherences do not influence the dy-
namics in that basis. Later on in this book, we will indeed see that there is a preferred
basis in which at least weakly coupled open quantum systems behave ‘classical.’ This
basis is the energy eigenbasis, which is related to the fact that the thermal equilibrium
state πS = e−βHS/ZS is diagonal in that basis. In the second part of this section we
connect the notion of quantum Markovianity to classical Markovianity.

Non–classicality and coherence

To investigate the question when does a quantum stochastic process mimic a classical
stochastic process, we return to the case of a projectively measured system observable
RS with a joint probability p(rn) as defined in eqns (1.59) and (1.60). It turns out
that our answer depends on the question whether the observable RS is degenerate
or not. For the moment we assume that it is non–degenerate, i.e., all projectors are
of rank one, which means that RS =

∑
r r|r〉〈r|S . To approach the problem, let us

first consider a case in which the quantum stochastic process evidently looks classical.
This case is described by assuming that at each time t`, ` ∈ {0, 1, . . . , n}, the joint
system–bath state can be written as

ρSB(t`) =
∑
r`

p(r`, t`)|r`〉〈r`|S ⊗ ρB(t`|r`). (1.84)

This describes a state with classical but no quantum correlations. The system is in state
|r`〉 with probability p(r`, t`) and conditioned on that the state of the bath is ρB(t`|r`)
on which we put no further restriction. A unique characteristic of the state (1.84) is
that a projective measurement of RS does not change it on average, i.e.,
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ρSB(t`) =
∑
r`

|r`〉〈r`|SρSB(t`)|r`〉〈r`|S . (1.85)

Put differently, ρSB(t`) is characterized by the fact that we can find a local measure-
ment basis (in this case {|r`〉S}), which has no quantum backaction, i.e., does not
disturb the state. Bipartite states, which have this property, are also said to possess
zero quantum discord. It is interesting to remark that such states allow to extend the
definition (1.82) of a dynamical map, originally given only for decorrelated system–
bath states of the form ρSB(0) = ρS(0)⊗ ρB(0), to classically correlated cases, but in
general not beyond. This is shown in the next exercise.

Exercise 1.25 Consider a system–bath state with zero quantum discord with respect to a
complete set of system projectors |j〉〈j|S such that

ρSB(0) =
∑
j

|j〉〈j|SρSB(0)|j〉〈j|S =
∑
j

pj |j〉〈j|S ⊗ ρB(j). (1.86)

Here, pj is a probablity distribution and ρB(j) the state of the bath given the state |j〉〈j|S of

the system. Show that the reduced system dynamics ρS(t) = trB{USBρSB(0)U†SB} is CPTP
for any unitary USB . Hint: Show that you can write

ρS(t) =∑
b,b′

[∑
j

〈
b
∣∣∣USB√ρB(j)

∣∣∣ b′〉|j〉〈j|S] ρS(0)

[∑
k

|k〉〈k|S
〈
b′
∣∣∣√ρB(k)U†SB

∣∣∣ b〉] , (1.87)

where {|b〉} and {|b′〉} are arbitrary bases in the bath Hilbert space and the square root of
ρB(j) is well–defined since ρB(j) is a positive operator. Then, put eqn (1.87) into operator–
sum representation.

Another consequence of the assumption (1.84) is that the projective measurement
statistics of RS =

∑
r r|r〉〈r|S are classical because they satisfy the Kolmogorov con-

sistency condition. The reader is asked to verify this in the next exercise.

Exercise 1.26 Show, assuming eqn (1.84) for all t`, that the joint probabilities (1.59) satisfy
the Kolmogorov consistency condition (1.53).

While states of the form (1.84) provide a sufficient criterion to decide that p(rn)
cannot be distinguished from a classical stochastic process, the answer is not yet
fully satisfactory for two reasons. First, deciding whether eqn (1.84) applies requires
explicit knowledge about the system–bath correlations, which is usually not available
in an experiment. Second, even if the system–bath state is not of the form (1.84), the
resulting measurement statistics p(rn) might nevertheless be indistinguishable from a
classical stochastic process. We now show that this happens whenever coherences in
the system state with respect to the basis {|r`〉S}r` do not influence the dynamics of
the populations.
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Recall that for a given basis {|r〉}r the density matrix can always be written as

ρ =
∑
r

ρrr|r〉〈r|+
∑
r′>r

(ρrr′ |r〉〈r′|+ h.c.) =


ρ11 ρ12 . . . ρ1n

ρ∗12 ρ22

...
...

. . . ρn−1n

ρ∗1n . . . ρ
∗
n−1n ρdd

 , (1.88)

where the diagonal elements of the matrix are called populations and the off-diagonal
elements coherences. The average effect of a porjective measurement of an observable
R is called a dephasing operation, denoted by DR in the following. Its action on
the previous state ρ is to delete all coherences:

DRρ ≡
∑
r

|r〉〈r|ρ|r〉〈r| =
∑
r

ρrr|r〉〈r| =


ρ11 0 . . . 0

0 ρ22

...
...

. . . 0
0 . . . 0 ρdd

 . (1.89)

We now introduce the notion of an incoherent process, which is supposed to
capture the absence of observable effects of the coherences on the population dynamics.
Namely, we call a quantum stochastic process n–incoherent (with respect to the system
observable RS), if all process tensors

T

[
DRn ,

{
DRn−1

In−1

}
, . . . ,

{
DR1

I1

}
, C0
]

(1.90)

are equal, where the curly bracked notation {·} signifies that we are free to choose
to apply either a dephasing operation DR` or nothing (i.e., the identity operation I`)
at time t`. Remember our convention to leave away the subscript S on operations
that act only on the system space. Furthermore, C0 describes an arbitrary but fixed
initial state preparation (recall Exercise 1.21). Therefore, an n–incoherent process is
characterized by the fact that the populations of its output state ρS(tn|C0) given any
initial state preparation at time t0 are insensitive to the question whether we erased all
coherences at any intermediate time step t`, ` ∈ {1, . . . , n− 1}, or not. Put differently,
the coherences do not affect the dynamics of the populations. In the following we are
only interested in processes, which are `–incoherent for all ` ∈ {1, 2, . . . , n}, and call
them incoherent.

Finally, we recall that the probability to get the measurement results rn, . . . , r1 for
a given state preparation C0 is p(rn, . . . , r1|C0) = trS{T[P(rn), . . . ,P(r1), C0]}. After
these preliminary considerations, we can formulate the first main result of this section,
whose proof is left as an exercise.

Classicality implies incoherence. If the hierarchy of probabilities p(rn, . . . , r1|C0)
obeys the Kolmogorov consistency condition (1.53), then the process is incoherent.

Exercise 1.27 Prove this statement. Hint: Since RS =
∑
r r|r〉〈r|S is assumed to be non–

degenerate, it follows that T[P(rn), . . . ,P(r1), C0] = p(rn, . . . , r1|C0)|rn〉〈rn|.



Classical Quantum Stochastic Processes 39

Thus, we see that the requirement of classicality as characterized by the Kol-
mogorov consistency condition is quite strong as it immediately implies that coherences
can have no detectable effect on the populations dynamics. However, experimentally
confirming the Kolmogorov consistency condition can become quite involved, whereas
confirming the notion of incoherent dynamics only requires to probe the response of a
system to one or multiple dephasing operations. The second main result of this section
specifies under which condition incoherent dynamics are sufficient to conclude that the
measurement statistics are classical.

Classicality from incoherence. If the dynamics are Markovian, invertible, and in-
coherent for all preparations C0, then the statistics are classical for any preparation.

To understand the notion of invertibility, recall eqn (1.79), which shows that Marko-
vian dynamics are characterized by a set of dynamical maps {E(t`, tk)|n ≥ ` ≥ k ≥ 0}.
Invertible Markovian dynamics are then defined by the requirement that the dynam-
ical maps E`,k are invertible (in the usual sense of an invertible matrix), where here
and in the rest of this chapter we use the abbreviation E`,k ≡ E(t`, tk). This puts us
in a position to prove the above statement.

Using that the process is incoherent and Markovian, we confirm that

DR`+1
E`+1,`DR`E`,0C0ρS(t0) = DR`+1

E`+1,`I`E`,0C0ρS(t0) (1.91)

must hold for all preparations C0. Since the dynamics are invertible, this becomes a
superoperator identity: DR`+1

E`+1,`DR` = DR`+1
E`+1,`. By multiplying this equation

with P(r`+1), we obtain the relation∑
r`

P(r`+1)E`+1,`P(r`) = P(r`+1)E`+1,`, (1.92)

where we used that DR` =
∑
r`
P(r`). Based on this, it is easy to show that the

Kolmogorov consistency condition is satisfied:∑
r`

p(rn, . . . , r1|C0) =
∑
r`

trS {P(rn)En,n−1 . . .P(r`+1)E`+1,`P(r`) . . . E1,0C0ρS(t0)}

= trS {P(rn)En,n−1 . . .P(r`+1)E`+1,`I` . . . E1,0C0ρS(t0)}
= p(rn, . . .��r` , . . . , r1|C0). (1.93)

This concludes the proof.
The question remains whether it is possible to relax some conditions above, for in-

stance, by looking at Markovian dynamics, which are incoherent only for some prepa-
rations C0 or not invertible. The following exercise excludes this possibility.

Exercise 1.28 Find examples of non-classical processes, which are Markovian and incoher-
ent with respect to a restricted set of preparations C0 or not invertible. Hint: It suffices to
consider the unitary evolution of a two-level system prepared in the maximally mixed state
ρS(t0) = (|0〉〈0|+ |1〉〈1|)/2.
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Finally, we briefly discuss the case of degenerate observables RS =
∑
r rΠS(r),

where some projectors ΠS(r) have a rank larger than one. One easily confirms that
the proof above made no use of the fact that the observable is non–degenerate. Thus,
classicality continues to follow from incoherence under the assumptions spelled out
above, even for degenerate observables. On the other hand, our first main result that
classicality implies incoherence can break down. The reason is that coherence could
affect the system state in the degenerate subspaces with respect to RS , whereas the
probabilities p(rn, . . . , r1|C0) do not reveal any information about these subspaces.

Classical Markov Processes

Our exposition of quantum stochastic and Markov processes would be quite incomplete
without mentioning the definition of a classical Markov processes.

Classical Markov process. We call a classical stochastic process described by prob-
abilities p(rn) on a set of times {t0, t1, . . . , tn} Markovian if

p(rn|rn−1) ≡ p(rn)

p(rn−1)
= p(rn|rn−1), (1.94)

holds for all joint probabilities in the hierarchy, i.e., for all subsets of times T ⊂
{t0, t1, . . . , tn}.

Equation (1.94) encodes the fact that the conditional probability p(rn|rn−1) of
a Markov process depends only on the last measurement result rn−1, but not on
previous ones rn−2, . . . , r0. It is important to note that we assumed in our definition the
probabilities p(rn) to actually describe a classical stochastic process, i.e., we assumed
the Kolmogorov consistency condition (1.53) to hold. The description of processes
satisfying only eqn (1.94) but not the consistency condition is more involved and differs
significantly from the standard theory of classical Markov processes. An example for
such a kind of process is an isolated, unitarily evolving system interrupted by rank–1
projective measurements. This process satisfies eqn (1.94), and it is also a quantum
Markov process (recall Exercise 1.23), but the probabilities p(rn) in general violate
the consistency condition because the projective measurements disturb the dynamics.

The connection between a quantum Markov process and a classical Markov process
is indeed subtle. At least, however, a statement analogous to eqn (1.79) holds also for
classical Markov processes. Namely, using the definition of conditional probabilities,
we can always write the joint probability p(rn) as

p(rn) =
p(rn)

p(rn−1)

p(rn−1)

p(rn−2)
. . .

p(r1)

p(r0)
p(r0)

= p(rn|rn−1)p(rn−1|rn−2) . . . p(r1|r0)p(r0).

(1.95)

Now, for a classical Markov process we can simplify that to

p(rn) = p(rn|rn−1)p(rn−1|rn−2) . . . p(r1|r0)p(r0), (1.96)
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where the conditional probabilities p(r`|rk) play an analogous role to the dynamical
maps E`,k: they also propagate the system state, now described by a vector of proba-
bilities p(rk), forward in time. In the next chapter we will often use these conditional
probabilities p(r`|rk) and call them transition matrices.

Now, the third and last main result of this section establishes the connection be-
tween quantum stochastic processes, classical stochastic processes and the Markov
property (1.94).

Classical from quantum Markovianity. Consider a quantum stochastic process,
which yields for a fixed set of interventions the probabilities p(rn). It is true that:

1. If the quantum stochastic process is Markovian and if all interventions are causal
breaks, then the probabilities p(rn) satisfy the Markov property (1.94).

2. If we add to the assumptions of point (1.) that the probabilities p(rn) also satisfy
the Kolmogorov consistency condition, then these probabilities describe a classical
Markov process.

If these statements are clear and understandable to the reader, you have success-
fully mastered the entire first chapter of this book. If there is some scepticism left, it
helps to try to prove them.

Exercise 1.29 Prove the statement above. Hint: For the first part it is helpful to note the
following equivalent statement: If for some set of interventions, which are causal breaks, the
probabilities p(rn) do not satisfy the Markov property (1.94), then the quantum stochastic
process is non–Markovian.

Further reading

1. The first section should be part of the
standard quantum mechanics curriculum.

2. Introducing open quantum systems
by partitioning an isolated ‘universe’ into
a system and an environment is also fairly
standard. Indeed, this idea is already inher-
ent to thermodynamics itself and therefore,
it was used long before the advent of mi-
croscopic system–bath theories. Which par-
ticular assumption and gauge is implied by
splitting the Hilbert space of the universe
into a tensor product of a system and a
bath Hilbert space is discussed by Stokes
and Nazir (2020). The picture on the right
in Fig. 1.1 was taken from Josefsson et al.
(2018).

3. In our discussion about equilibrium
states of open quantum systems we left

open how to justify the use of ensembles
at first place given that any isolated quan-
tum system in some pure state. Readers
interested in this non–trivial question can
find a large body of recent reviews on this
topic (Gemmer et al., 2004; D’Alessio et al.,
2016; Borgonovi et al., 2016; Gogolin and
Eisert, 2016; Goold et al., 2016; Deutsch,
2018; Mori et al., 2018). Furthermore, read-
ers interested in a proof of Poincaré’s re-
currence theorem can look, e.g., at the
work of Wallace (2015). Calculating the ex-
act Poincaré recurrence time for a given
model is very hard, but estimates can be
found at various places (Reimann, 2008;
Venuti, 2015). The Hamiltonian of mean
force was first discussed almost hundred
years ago by Onsager, Kirkwood, and oth-
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ers, and the concept is widely used in chem-
ical physics (Roux and Simonson, 1999),
but the terminology has not yet become
standard in the wider physics community.
The Caldeira–Leggett Hamiltonian, which
we introduced in Exercise 1.2 and which we
will meet from time to time again, became a
standard model to describe the dynamics of
open quantum systems, for in–depth treat-
ments see, e.g., the books of Nitzan (2006)
and Weiss (2008).

4. Section 1.4 reviewed well–known re-
sults covered in greater detail elsewhere
(Nielsen and Chuang, 2000; Holevo, 2001;
Wiseman and Milburn, 2010; Jacobs, 2014).

5. The content of Section 1.5 is re-
viewed at many places in greater detail
(Nielsen and Chuang, 2000; Holevo, 2001;
Wiseman and Milburn, 2010; Jacobs, 2014).
An early influential book was written by
Kraus (1983). For this reason, the operators
Kα appearing in eqn (1.45) are sometimes
called Kraus operators and the entire oper-
ation is sometimes called a Kraus map. We
did not follow this terminology here as those
maps and operators were studied already
earlier. In general, the historical develop-
ment of the field is quite intertwined involv-
ing many mathematicians and physicists
(re)discovering the same results from differ-
ent perspectives. The proof of the operator–
sum representation can be found, e.g., in the
book of Nielsen and Chuang (2000) (Theo-
rem 8.1 therein). This proof makes use of
the Choi–Jamio lkowski isomorphism, an el-
egant mathematical construction reviewed
also in Appendix B. For a proof of the
unitary dilation theorem see Nielsen and
Chuang (2000) or Holevo (2001).

6. The field of classical stochastic pro-
cesses is covered in many textbooks, but

only a very few prove the extension theo-
rem mentioned in Section 1.6, see, e.g., the
original work of Kolmogorov (2018). A stan-
dard book covering many aspects of classi-
cal causal modeling was written by Pearl
(2009).

7. In contrast to the previous sections,
the treatment of quantum stochastic pro-
cesses as done in Section 1.7 has not yet
become standard material, although the ba-
sic idea is quite old (Lindblad, 1979). How-
ever, only recently this approach regained
independent attention from many different
directions, see Milz and Modi (2021) for
a detailed introduction citing many refer-
ences. The generalized extension theorem
for quantum stochastic processes is dis-
cussed by Milz et al. (2020b). The gener-
alized Bloch representation (1.66) is due
to Byrd and Khaneja (2003).

8. The definition of a quantum Markov
process has caused some debate, see Li et al.
(2018) for the latest review of many dif-
ferent perspectives. Our definition coincides
with the one of Pollock et al. (2018b). It
has the advantage that it reduces to the
conventional Markov definition for a classi-
cal stochastic process in its respective limit.
In fact, for classical systems it coincides
with the causal Markov condition of clas-
sical causal models (Pearl, 2009).

9. In the first part of the last sec-
tion we followed Strasberg and Dı́az (2019)
and Milz et al. (2020a). Putting multi–
time statistics aside, the influence of ini-
tial system–bath correlations as quantified
by quantum discord on the definition of a
dynamical map (Exercise 1.25) was investi-
gated by Rodŕıguez-Rosario et al. (2008).



Appendix A

Concepts from Information Theory

We briefly review some basic concepts of classical and quantum information theory and
afterwards present some useful, advanced theorems without proof. Below, we denote
by d = dimH the dimension of the Hilbert space of the system or, in the classical
case, d denotes the dimension of the space in which the vector of probabilities p ∈ Rd
lives. Furthermore, dX,Y,... refers to the dimension of a subsystem X,Y, . . . .

A.1 Basic Concepts

Classical information theory

We define the Shannon entropy of a probability distribution {px} with probabillity
vector p as

SSh({px}) = SSh(p) ≡ −
∑
x

px ln px. (A.1)

Note that we use the natural logarithm in the definition (measuring entropy in ‘nats’),
whereas in information theory it is customary to use the logarithm log2 with respect
to base 2 (measuring entropy in ‘bits’ = ln 2 nats ≈ 0.69 nats).

If the state of a physical system X is described by probabilities {px}, then the
Shannon entropy can be interpreted as the information content that the system has to
offer to an external observer upon a measurement of the system. Switching perspective,
from the observer’s point of view the Shannon entropy can be interpreted as the
uncertainty one has about a system X before measuring it. There is no uncertainty
about a system (or the system contains no information for the observer, respectively)
if the system is for sure in the state x∗: px = δx,x∗ . Then, it follows from the convention
0 ln 0 ≡ 0, which can be justified by the limit limx↘0 x lnx = 0, that SSh({δx,x∗}) = 0.
Furthermore, one can verify the following four properties:

(1) The Shannon entropy is bounded from above and below: 0 ≤ SSh(p) ≤ ln d.

(2) The Shannon entropy SSh({px}) is continuous in each px.

(3) If SSh(d) denotes the Shannon entropy of the uniform distribution px = 1/d for all
x, then SSh(d) < SSh(d + 1). Thus, the uncertainty of a system always increases
if it can be in more different states about which we have no prior information.

(4) Let us divide the system X into ‘subsystems’ X =
⊕

αXα and decompose the
probabilities as px = px|αPα, where Pα is the probability to be in subsystem Xα

and px|α is the conditional probability to be in x given α. Then, the Shannon
entropy ‘additively’ decomposes as
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SSh({px}) = SSh({Pα}) +
∑
α

PαSSh({px|α}). (A.2)

The above properties can be regarded as natural properties that a measure of
uncertainty or information should satisfy, but in fact, Shannon deduced eqn (A.1) (up
to an overall positive factor) from the properties (2), (3) and (4).

Furthermore, there are a number of important information theory concepts related
to Shannon entropy. First, we define the classical relative entropy between two
probability vectors p and q of the same system X as

D(p|q) ≡
∑
x

px ln
px
qx
≥ 0. (A.3)

The positivity of relative entropy can be derived from properties that we discuss at
the beginning of Section 4.6; namely, that the convex function f(x) ≡ x lnx satisfies
Jensen’s inequality (4.117). Furthermore, eqn (A.3) can diverge whenever qx = 0 but
px 6= 0. Since D(p|q) = 0 if and only if p = q, relative entropy can be interpreted as
measuring the ‘distance’ or ‘difference’ between the two probability vectors p and q,
i.e., the larger D(p|q) the easier it is to tell them apart. Nevertheless, relative entropy is
not a metric in the mathematical sense because it is not symmetric: D(p|q) 6= D(q|p).

Another important concept is the classical mutual information, which is defined
for a bipartite system XY with joint probability vector pXY as

I(pXY ) ≡ SSh(pX) + SSh(pY )− SSh(pXY ) =
∑
x,y

px,y ln
px,y
pxpy

, (A.4)

where pX and pY describe the marginal distributions of pXY . We remark that we often
write IX:Y ≡ I(pXY ) if the probability vector pXY is clear from context. Classical
mutual information is bounded from above and below by

0 ≤ I(pXY ) ≤ ln min{dX , dY }. (A.5)

The first inequality follows after noting that I(pXY ) = D(pXY |pX ⊗ pY ), which
also establishs the fact that mutual information quantifies the correlations contained
in pXY . To derive the second inequality, we suppose that dX ≤ dY without loss of
generality. Next, we write

I(pXY ) = SSh({px})−
∑
y

pySSh({px|y}). (A.6)

The claim is now that there exists a legitimate probability distribution px,y, which
(simultaneously) maximizes the first term and minimizes the second term in eqn (A.6).
To see this, consider any injective function f : X → Y (note that this step requires
dX ≤ dY ) and define p̃x,y ≡ δy,f(x)/dX . This gives p̃x|y = δx,f−1(y) for all x, y such
that f(x) = y. For all y for which no x exists such that f(x) = y, we have p̃y = 0.
In either case, the second term in eqn (A.6) vanishs. Thus, this distribution satisfies
I(p̃XY ) = ln dX .
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Quantum information theory

The subsequent quantum concepts in information theory follow from the classical case
by analogy. We start with the von Neumann entropy, which is defined as

SvN(ρ) ≡ −tr{ρ ln ρ} = −
∑
k

λk lnλk = SSh({λk}), (A.7)

where we used the spectral decomposition of ρ =
∑
k λk|k〉〈k| at the end. The von

Neumann entropy of a quantum system is therefore measures the classical uncertainty
an external observer has about the state of the system. Equivalently, the classical
information content of a system in state ρ equals its von Neumann entropy. The von
Neumann entropy has a couple of elementary properties, which we will occasionally
use in this book and which we state here without proof.

1. The von Neumann entropy is bounded from above and below: 0 ≤ SvN(ρ) ≤ ln d.

2. The von Neumann entropy is invariant under any unitary transformation U :
SvN(UρU†) = SvN(ρ).

3. For a bipartite quantum system in a state ρXY with marginal states ρX/Y =
trY/X{ρXY } we have

SvN(ρXY ) ≤ SvN(ρX) + SvN(ρY ) (A.8)

with equality if and only if ρXY = ρX ⊗ ρY . Equation (A.8) is known as subad-
ditivity of von Neumann entropy.

4. The von Neumann entropy is concave, i.e., for any convex combination
∑
j λjρj

of density matrices ρj with weights λj ≥ 0 such that
∑
j λj = 1,

∑
j

λjSvN(ρj) ≤ SvN

∑
j

λjρj

 . (A.9)

Further concepts are directly related to the von Neumann entropy. First, the quan-
tum relative entropy between two states ρ and σ is defined as

D(ρ|σ) ≡ tr{ρ(ln ρ− lnσ)} ≥ 0. (A.10)

Its positivity follows from Klein’s inequality, which we do not discuss or derive here.
Furthermore, D(ρ|σ) = 0 if and only if ρ = σ. As in the classical case, relative entropy
measures the statistical difference between two quantum states. For instance, let σ =
I/d be the maximally mixed state. Then,

D

(
ρ

∣∣∣∣Id
)

= ln d− SvN(ρ), (A.11)

which is intuitively appealing: the larger the uncertainty about ρ, the less it can be
distinguished from a maximally mixed or uninformative state. However, since the
relative entropy is not symmetric, D(ρ|σ) 6= D(σ|ρ), it does not define a metric.
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Furthermore, it diverges whenever the support of ρ is not contained in the support of
σ as in the classical case. Like the von Neumman entropy, relative entropy is invariant
under any unitary transformation U : D(UρU†|UσU†) = D(ρ|σ). In contrast to von
Neumann entropy, it is not concave but convex: D(ρ|σ) ≤ ∑j λjD(ρj |σj) for convex
combinations ρ =

∑
j λjρj and σ =

∑
j λjσj .

A second important concept is the quantum mutual information of a bipartite
state ρXY :

I(ρXY ) ≡ SvN(ρX) + SvN(ρY )− SvN(ρXY ) ≥ 0. (A.12)

We also write IX:Y ≡ I(ρXY ) if the state ρXY is clear from context. Furthermore, posi-
tivity follows from subadditivity, eqn (A.8), or after noting that I(ρXY ) = D(ρXY |ρX⊗
ρY ), which shows that quantum mutual information measures the correlations between
X and Y as in the classical case. However, in contrast to the classical case, cf. eqn (A.5),
quantum mutual information is upper bounded by (note the factor 2)

I(ρXY ) ≤ 2 ln min{dX , dY }. (A.13)

This implies that quantum correlations can be twice as strong as classical correlations.
To prove the bound, we need to find again a state that simultaneously maximizes the
first two terms and minimizes the last term in eqn (A.12). At least in the case that
dX = dY , it is easy to see that these conditions are satisfied by a maximally entangled
state ρXY = |ψ〉〈ψ|XY with |ψ〉XY =

∑dX
k=1 |k〉X |k〉Y /

√
dX . Here, |k〉X (|k〉Y ) denotes

an arbitrary set of orthonormal states in HX (HY ).
It is interesting to note that we used a pure state to maximize the mutual infor-

mation in the quantum case, whereas in the classical case we used a mixed state. In
fact, the classical mutual information of any classical pure state, which is always of
the form px,y = δx,x∗δy,y∗ for some x∗ ∈ X and y∗ ∈ Y , is zero—in strong contrast
to the quantum case. The origin of this striking difference between the quantum and
classical world comes from the fact that the reduced state ρX = trY {|ψ〉〈ψ|XY } of a
joint pure state is in general not pure anymore.

Finally, we will sometimes also need to quantify correlations of an N–partite state
ρ12...N with N > 2. This can be done in many different ways and in this book we will
sometimes encounter the total information

Itot(ρ12...N ) ≡
N∑
i=1

SvN(ρi)− SvN(ρ12...N ). (A.14)

This quantity also has a variety of properties. A few of them are explored in the next
exercise.

Exercise A.1 Show that the total information can be written in the two alternative forms

Itot(ρ12...N ) = D(ρ12...N |ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρN )

= I1:2 + I12:3 + · · ·+ I12...N−1:N .
(A.15)

Notice that eqn (A.15) implies that the total information is positive.



280 Concepts from Information Theory

A.2 Advanced Inequalities

We here state a couple of useful inequalities without proof, which will be used at
certain points in this book and which are good to know in general. Since not all of
these inequalities have a (simple memorable) name, we label them as ‘Theorem A.1,’
‘Theorem A.2’, etc. for later reference in the main text.

The first inequality bounds the entropy of a mixture of quantum states and should
be compared with eqn (A.9):

Theorem A.1 Let ρ =
∑
n λnρn be a convex combination of density matrices. Then,

SvN(ρ) ≤
∑
n

λnSvN(ρn) + SSh(λ). (A.16)

Equality holds if and only if the ρn have support on mutually orthogonal subspaces.

Closely related to the previous theorem is also the next one. To state it, we need
the notion of a positive operator–valued measure (POVM) from Section 1.4.

Theorem A.2 Let {Pn} be a set of positive operators such that {P 2
n} is a POVM

(i.e.,
∑
n P

2
n = I). Then, for any state ρ,

SvN(ρ) ≤ SvN

(∑
n

PnρPn

)
. (A.17)

The content of the last two theorems can be neatly summarized in one equation.
Defining ρn ≡ PnρPn/λn with λn ≡ tr{P 2

nρ}, we obtain

SvN(ρ) ≤ SvN

(∑
n

λnρn

)
≤
∑
n

λnSvN(ρn) + SSh(λ). (A.18)

Exercise A.2 Show that projective measurements increase the von Neumann entropy of the
average post–measurement state.

The next result is known as monotonicity of relative entropy. If you are not
yet familiar with the notion of CPTP maps, postpone the rest of this section until you
are familiar with the content of Section 1.5.

Theorem A.3 For any CPTP map C and all states ρ, σ we have

D(Cρ|Cσ) ≤ D(ρ|σ). (A.19)

This theorem is so important that we put a box around it: It appears in many
microscopic derivations of the second law in the main text. Some insights into the
derivation and the use of it can be gained from the following exercise.
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Exercise A.3 Consider two arbitrary bipartite states ρAB and σAB and show that eqn (A.19)
implies

D(ρA|σA) ≤ D(ρAB |σAB). (A.20)

Then, use eqn (A.20) to derive eqn (A.19) in general. Hint: Remember the unitary dilation
theorem, eqn (1.49).

We also use the classical counterpart of Theorem A.3 in this book, for which we
need the notion of a stochastic matrix T defined by the requirement that Tx,x′ ≥ 0 for
all x, x′ and

∑
x Tx,x′ = 1 for all x′.

Theorem A.4 For any stochastic matrix T and any two probability distributions p
and q we have

D(Tp|Tq) ≤ D(p|q). (A.21)

Finally, a useful theorem to bound the quantum relative entropy is the following.

Theorem A.5 For arbitrary states ρ and σ acting on a Hilbert space with dimension
d we have

D(ρ|σ) ≥ [SvN(ρ)− SvN(σ)]2

3(ln d)2
. (A.22)

Further reading

The fields of classical and quantum informa-
tion theory are enormous and better cov-
ered elsewhere (Cover and Thomas, 1991;
Nielsen and Chuang, 2000). That they are
intimately linked to the field of statisti-
cal mechanics was, in some sense, even no-
ticed before the advent of information the-
ory. The origin of the word entropy goes
back to Clausius and some of the definitions
given above were already used by Boltz-
mann, Gibbs and others.

The proof of Theorem A.1 can be looked
up in the book of Nielsen and Chuang
(2000) (Theorem 11.10 therein) and the
proof of Theorem A.2 can be found in
the book of Jacobs (2014) (Theorem 11
therein). Whereas the proofs of the previ-
ous theorems are not too complicated, the
proof of Theorem A.3 is involved (Lindblad,
1975; Ruskai, 2002). The last Theorem A.5
was discovered recently by Reeb and Wolf
(2015).
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Superoperators

Maps that map matrices onto matrices (or operators onto operators) are often called
superoperators and we denote them by calligraphic letters such as A, B, C . . .
throughout this book. The goal of this appendix is to show that superoperators are
simply ‘big matrices’ and to provide some background information useful for practical
calculations and numerical implementations.

Recall that, whenever you have a vector space V and a map Φ : V → V acting
linearly on it, then this map can be represented by a matrix. To see this, consider an
arbitrary vector v =

∑
i viei ∈ V decomposed in an arbitrary basis {ei} of that vector

space. Since Φ acts linearly, we have

Φ(v) =
∑
i

viΦ(ei). (B.1)

The components of Φ(v) ∈ V can be read off by taking the scalar product

Φ(v)j ≡ 〈ej |Φ(v)〉 =
∑
i

vi〈ej |Φ(ei)〉 ≡
∑
i

Φ̂jivi. (B.2)

In the last step we introduced the matrix Φ̂ with components Φ̂ji = 〈ej |Φ(ei)〉. In
order to distinguish it from the abstract map Φ and in order to emphasize that the
representation of Φ̂ depends on the chosen basis, we put a ‘hat’ on it. In that basis the
action of Φ is given by ordinary matrix multiplication and we identify Φ(v)↔ Φ̂v.

Now, the same recipe can be also applied to superoperators since the set of com-
plex d× d matrices (where d equals the dimension of the underlying Hilbert space in
quantum mechanical applications) forms a vector space. All what we have to do is to
fix a basis and a scalar product for the vector space of complex d× d matrices. Below,
we will review two popular choices: one is typically used for numerical manipulations,
whereas the other has additional mathematical and structural advantages.

B.1 Numerically Convenient Superoperator Mapping

For the first choice consider an arbitrary matrix ρ written in some basis {|k〉} as

ρ =
∑
k,l

ρkl|k〉〈l|. (B.3)

Now, we wish to map the set of matrix coefficients {ρkl} to a vector, a procedure also
known as vectorization. One way to do so is offered by identifying the basis element
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|k〉〈l| in the space of matrices with the tensor product of the two vectors |k〉 and |l〉∗.
Here, the star denotes complex conjugation in case that |l〉 has complex coefficients.
This choice turns out to be convenient, but other choices are possible too. Henceforth,
we identify |k〉〈l| ↔ |k〉⊗ |l〉∗ ≡ |kl〉〉, where we used a ‘double–ket’ notation to denote
vectorized operators. Thus, we identify

ρ↔ |ρ〉〉 =
∑
k,l

ρkl|kl〉〉 =
∑
k,l

ρkl|k〉 ⊗ |l〉∗. (B.4)

The dual vectors 〈〈kl| = 〈k| ⊗ 〈l|∗ = (|k〉 ⊗ |l〉∗)†, denoted by a ‘double–bra,’ are
constructed as usual by taking the conjugate transpose: 〈〈ρ| = ∑k,l ρ

∗
kl〈k| ⊗ 〈l|∗.

Next, we introduce a scalar product (ρ|σ) between two matrices ρ and σ (assumed
to be of equal size) by defining

(ρ|σ) ≡ tr{ρ†σ}. (B.5)

This scalar product is known as the Frobenius or Hilbert–Schmidt scalar product.

Exercise B.1 Show that (ρ|σ) = 〈〈ρ|σ〉〉, where |ρ〉〉 and |σ〉〉 are the vectorized matrices
introduced above and 〈〈ρ|σ〉〉 denotes the usual scalar product of two complex vectors. Next,
introduce the vector |I〉〉 ≡

∑
k |k〉 ⊗ |k〉

∗. Show that |I〉〉 is the vectorization of the identity
matrix I. Show also that the trace can be written in superoperator space as 〈〈I|A〉〉 = tr{A},
where A is an arbitrary matrix.

In order to use ordinary matrix calculus for superoperators, we need to know the
matrix representation Â of an arbitrary superoperator A with respect to the above
chosen basis. For this purpose we use the fact that the action of every superoperator
A can be written as

Aρ =
∑
k

XkρYk (B.6)

for some set of (not further specified) matrices {Xk} and {Yk}. The proof of this
statement follows from our considerations below as we discuss later. Consequently, in
order to write A as a matrix Â, we need to know how to represent the operation XρY
for arbitrary X and Y as a matrix. To this end, we look at its matrix elements:

(XρY )mn =
∑
k,l

ρkl〈m|(X|k〉)〈l|(Y |n〉) =
∑
k,l

ρkl〈m|(X|k〉)[〈n|(Y †|l〉)]∗

= 〈m| ⊗ 〈n|∗X ⊗ Y T
∑
k,l

ρkl|k〉 ⊗ |l〉∗ = 〈〈mn|
(
X ⊗ Y T |ρ〉〉

)
.

(B.7)

Here, a superscript T denotes the transpose of a matrix. Note that X and Y need not
be Hermitian, which is the reason why we were extra careful and wrote, for instance,
〈m|(X|k〉) to make clear on which side of the scalar productX is acting. From eqn (B.7)
we then infer the following matrix representation of the superoperator A:

Aρ = XρY ↔ Â = X ⊗ Y T . (B.8)

Obviously, the matrix representation of the superoperator in eqn (B.6) follows as
Â =

∑
kXk ⊗ Y Tk .
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Finally, we show that the concatenation of two superoperators A2 ◦A1 corresponds
to ordinary matrix multiplication Â2 · Â1, here explicitly denoted with a dot. We do so
by considering the superoperators A1ρ = X1ρY1 and A2ρ = X2ρY2. The more general
case of eqn (B.6) follows from linearity. Then, to see this, we define Bρ ≡ A2 ◦ A1ρ =
X2X1ρY1Y2 and from eqn (B.8) it follows that

B̂ = X2X1 ⊗ (Y1Y2)T = X2X1 ⊗ Y T2 Y T1 = (X2 ⊗ Y T2 )(X1 ⊗ Y T1 ) = Â2 · Â1. (B.9)

Another direct but tidious way is to confirm that for any ρ it holds that 〈i|(A2 ◦
A1ρ)|j〉 =

∑
k,l 〈〈ij|Â2|kl〉〉〈〈kl|Â1|ρ〉〉.

Let us now return to eqn (B.6) by going the reverse way. We saw that any super-
operator A can be represented by a matrix Â. If we denote by {Bk} a basis for the
vector space of d× d matrices on which A acts, then the space of d2 × d2 matrices Â
is spanned by the basis {Bk ⊗ BTl }. In particular, any matrix representation of the
superoperator A can be expanded as

Â =
∑
k,l

aklBk ⊗BTl (B.10)

for some complex coefficients akl. It follows from our representation (B.8) that the
corresponding superoperator A reads

Aρ =
∑
k,l

aklBkρBl, (B.11)

which is of the general form (B.6) if we define Xk ≡ Bk and Yk ≡
∑
l aklBl.

While the above exposition provides all the necessary tools to deal with superop-
erators numerically, the devil is (as usual) in the detail and simply requires further
practice. As a first lesson the reader is therefore asked to confirm the following results.

Exercise B.2 An important superoperator in quantum mechanics results from considering
the time evolution of an isolated system, which is given by Uρ ≡ UρU† for some unitary
matrix U . According to the above construction, the matrix representation of U is given by

Û = U⊗U∗. Show that Û is unitary in the usual sense of Û · Û† = Û† · Û = Î, where Î = I⊗I
is the identity matrix in superoperator space. On the other hand, according to the definitions
(i) and (i’) of Section 1.5 the map Uρ ≡ UρU† is CP. Show that this does not imply that the

matrix Û is positive.

B.2 The Choi–Jamio lkowski Isomorphism

We now consider another way to represent superoperators by matrices, which somehow
reverses the properties found out in the foregoing exercise. This representation plays
an outstanding role in mathematical physics and is typically refered to as the Choi–
Jamio lkowski isomorphism.

To introduce it, let A be a superoperator acting on quantum states ρ1 defined
over a Hilbert space H1. Next, we consider the tensor product space H1 ⊗H0 where
H0 = H1 is just a copy of the original Hilbert space. It turns out, however, to be
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convenient to use a different index ‘0’ instead of ‘1’ in the notation. A central role in
the following is played by the non–normalized maximally entangled state

|ψ+〉 ≡
∑
i

|i〉 ⊗ |i〉 ∈ H1 ⊗H0, (B.12)

where {|i〉} is an arbitrary orthonormal basis in H1 or H0, respectively. The vectoriza-
tion procedure for an arbitrary operator X1 acting on H1 in the Choi–Jamio lkowski
isomorphism is accomplished via the mapping

|X〉〉 ≡ (X1 ⊗ I0)|ψ+〉 =
∑
i

(X|i〉)⊗ |i〉 ∈ H1 ⊗H0. (B.13)

Similarly, a superoperator A is mapped to a matrix A via the prescription

A ≡ (A1 ⊗ I0)|ψ+〉〈ψ+| =
∑
i,j

A(|i〉〈j|)⊗ |i〉〈j|, (B.14)

which is a matrix acting on the vector space H1 ⊗H0. In this context, A is known as
the Choi matrix. To recover the action of A on a state ρ, one uses the relation

Aρ = tr0{(I1 ⊗ ρT0 )A}, (B.15)

which is easy to confirm by direct calculation.
Working with the Choi matrix (B.14) has an important advantage: The superop-

erator A is CP if and only if its Choi matrix is positive: Â ≥ 0. In fact, the direction
“⇒” is easy to see, but the converse direction requires more work. To get further
acquainted with Choi matrices, the reader is asked to do the following exercise.

Exercise B.3 Show that, if A is trace–preserving, then the trace of the Choi matrix is

tr{Â} = d, where d = dimH1. Thus, recalling that Â ≥ 0, we can view Â/d as a quantum
state of a bipartite system, which is in one–to–one correspondence with the map A. However,
in contrast to our earlier construction, the Choi matrix of a unitary time evolution map
Uρ = UρU† is no longer unitary. Convince yourself of this.

We proceed by looking at the concatenation of superoperators, which can be de-
scribed using the link product ∗. To this end, it turns out to be convenient to
explicitly include the spaces on which the Choi matrices are defined in the notation.
Thus, let A10 act on two spaces labeled 1 and 0 and B21 acts on two spaces labeled 2
and 1. Their link product is defined as

B21 ∗ A10 = tr1{(I2 ⊗ AT1
10)(B21 ⊗ I0)}, (B.16)

where T1 means transpose on space 1 only, i.e., AT1
10 =

∑
i,j A(|i〉〈j|)T1 ⊗ |i〉〈j|0. In

words, the link product takes two Choi matrices, puts them in reverse order, appends
them with identity matrices to make them act on the same joint space (here, the space
210), performs a partial transpose of one matrix with respect to the common space
(here, the space 1), and finally traces them over the common space.
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The link product satisfies a number of elementary properties, which can be checked
by direct calculation. For instance, it is associative if the three matrices share no
common space, which we write as

C32 ∗ B21 ∗ A10 = (C32 ∗ B21) ∗ A10 = C32 ∗ (B21 ∗ A10). (B.17)

Moreover, if two matrices have no space in common, the link product reduces to the
tensor product:

B2 ∗ A0 = B2 ⊗ A0. (B.18)

If they act on the same space instead, one obtains the Hilbert–Schmidt scalar product

B0 ∗ A0 = tr0{BT0 A0}. (B.19)

Finally, the link product is commutative up to relabeling of Hilbert spaces,

B21 ∗ A10 = S2,0A10 ∗ B21S2,0, (B.20)

where S2,0 = S†2,0 is the unitary swap operator between spaces 2 and 0, defined as
S2,0|j〉2 ⊗ |k〉0 = |k〉0 ⊗ |j〉2. In particular, the link product is commutative if the
participating spaces are traced over in the final expression. For instance, for arbitary
different spaces 0, 1, 2, 3, 4 and 5 it is true that

tr3{D54 ∗ C432 ∗ B21 ∗ A10} = tr3{D54 ∗ B21 ∗ C432 ∗ A10}. (B.21)

To connect the link product to the concatenation of superoperators acting on a state
ρ it is useful to introduce some conventions. First of all, we identify the Choi matrix
of ρ with ρ itself. Equation (B.15) then implies Aρ = tr0{(I1 ⊗ ρT0 )A10} = A10 ∗ ρ0.
Moreover, although the state space of ρ is always the same, it is useful to denote state
spaces at different times with different labels, i.e., we formally associate to each time
a different space. Thus, instead of writing C ◦ B ◦ Aρ, we write C32 ◦ B21 ◦ A10ρ0,
and we call, e.g., space 1 the output space of A and the input space of B. With this
identification we have

C32 ◦ B21 ◦ A10ρ0 = C32 ∗ B21 ∗ A10 ∗ ρ. (B.22)

B.3 Matrix Representations of the Process Tensor

We return to the process tensor introduced in Section 1.7, which we can now express
in a neat form. To this end, we label the input space of the nth control operation C(rn)
with Sn and its output space with S′n (remember that the control operations only act
on the system). The bath space during the nth control operation is labeled Bn. This
convention is illustrated in Fig. B.1. The process tensor defined in eqn (1.61) is then
written as

T[C(rn), . . . , C(r1), C(r0)] =

trBn

{
CS′n,SnUSnBn,S′n−1Bn−1

· · · CS′1,S1
US1B1,S′0B0

CS′0,S0
ρS0B0

}
.

(B.23)



Matrix Representations of the Process Tensor 287

Fig. B.1 Process tensor with input and output spaces labeled according to our convention.

where we dropped any dependence on time or the measurement results rn for nota-
tional simplicity. Now, observe that each space in eqn (B.23) appears exactly twice
(except of S′n, which appears only once). This allows us to write

T[C(rn), . . . , C(r1), C(r0)] = (B.24)

trBn

{
CS′n,Sn ∗ USnBn,S′n−1Bn−1

∗ · · · ∗ CS′1,S1
∗ US1B1,S′0B0

∗ CS′0,S0
∗ ρS0B0

}
.

Next, observe that we can apply eqn (B.21) to rearrange terms into

T[C(rn), . . . , C(r1), C(r0)] = (B.25)

CS′n,Sn ∗ · · · ∗ CS′1,S1
∗ CS′0,S0

∗ trBn

{
USnBn,S′n−1Bn−1

∗ · · · ∗ US1B1,S′0B0
∗ ρS0B0

}
.

We can write this concisely as

T[C(rn), . . . , C(r1), C(r0)] = C(rn) ∗ T (B.26)

with C(rn) = C(rn) ⊗ · · · ⊗ C(r0), where we used eqn (B.18) and introduced the
dependence on the measurement results again, and T = trB{Un−1 ∗ · · · ∗ U0 ∗ ρ0},
where the subscripts now denote the time steps, tacitly assuming the association of
input and output spaces as illustrated in Fig. B.1.

Taking the trace over the final output space and using eqn (B.19), we can compactly
write

p(rn) = trS{T[C(rn), . . . , C(r1), C(r0)]} = tr{C(rn)TT}, (B.27)

where the final trace is over the spaces S′n, Sn, . . . , S
′
0, S0. Equation (B.27) can be

interpreted as a generalization of the Born rule to multiple time steps. Indeed, at a
single time the Born rule says that p(r) = tr{P (r)ρ} for some POVM element P (r)
and state ρ. By analogy, C(rn)T corresponds to a multitime POVM element and T
corresponds to a multitime ‘state.’ In particular, we note that both objects are positive.

Thus, we can conclude that the link product defined on Choi states acting on
multiple input/output spaces allows for a convenient separation of the process T itself,
which captures all the effects of the environment, and the external control operations
C(rn). The probability to get a sequence of outcomes rn can be obtained by matrix
multiplication of the two objects followed by a trace. This separation is, of course, not
a particular consequence of the Choi–Jamio lkowski isomorphism—it follows from any
representation as we illustrate now, which further elucidates the meaning of the link
product and of eqn (B.25).

For this purpose we consider an explicit matrix representation of the state and su-
peroperators. Let ρ(0) =

∑
ρα0,β0

a0,b0
|α0a0〉〈β0b0| be the initial state, where Greek (Latin)
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indices label the bath (system) degrees of freedom (thus, the index b0 does not label
bath degrees of freedom), and summation symbols

∑
without subscripts correspond to

sums over all indices in the following. Note that we do not specify a particular basis for
the representation. The unitary time evolution operator in the first time step from 0
to t1 is written as U0 =

∑
Uα1,α0
a1,a0

|α1a1〉〈α0a0| and the action of the time evolution su-

peroperator on the initial state is written as U0ρ(0) =
∑Uα1α0,β1β0

a1a0,b1,b0
ρα0,β0

a0,b0
|α1a1〉〈β1b1|.

For simplicity, we consider only a three–step process in the following; the gener-
alization to an n–step process is mathematically straightforward but cumbersome to
write down. We find (again dropping the dependence on rn in the notation)

C2U1C1U0C0ρ(0) =∑
Ca′2a2,b′2b2

Uα2α1,β2β1

a2a′1,b2b
′
1
Ca′1a1,b′1b1

Uα1α0,β1β0

a1a′0,b1b
′
0
Ca′0a0,b′0b0

ρα0,β0

a0,b0
|α2a

′
2〉〈β2b

′
2|.

(B.28)

Tracing over the system and bath degrees of freedom and regrouping terms, we find

p(r2, r1, r0) =
∑
Latin

(∑
Greek

Uεα1,εβ1

a2a′1,b2b
′
1
Uα1α0,β1β0

a1a′0,b1b
′
0
ρα0,β0

a0,b0

)
Cea2,eb2Ca′1a1,b′1b1

Ca′0a0,b′0b0

≡
∑
Latin

Ta2a′1a1a′0a0,b2b′1b1b
′
0b0

Ca2a′1a1a′0a0,b2b′1b1b
′
0b0

= tr{TCT }. (B.29)

Here, we have again separated the influence of the environment from the control op-
erations. In fact, the trace over the Latin indices corresponds precisely to the trace
on the right hand side of eqn (B.27). Furthermore, the term in the brackets presents
an explicit matrix representation of the process tensor T, which can be associated
to trB{U1 ∗ U0 ∗ ρ(0)} if one interprets the link product as a matrix product in the
environment space and a tensor product in the system space. Likewise, the term C
containing the control operations can be associated to C2 ∗ C1 ∗ C0 = C2 ⊗ C1 ⊗ C0.
This analogy can be even further strengthened by tracing out only the bath degrees
of freedom in eqn (B.28) and by noting that

trB{C2U1C1U0C0ρ(0)} = (B.30)

trS2S′1S1S′0S0

{
IS′2 ⊗

∑
Latin

∑
Greek

Uεα1,εβ1

a2a1,b2,b1
Uα1α0,β1β0

a1a0,b1,b0
ρα0,β0

a0,b0
|a2a

′
1a1a

′
0a0〉〈b2b′1b1b′0b0|

×
∑
Latin

Cā′2ā2,b̄′2b̄2
Cā′1ā1,b̄′1b̄1

Cā′0ā0,b̄′0b̄0
|ā′2ā2ā

′
1ā1ā

′
0ā0〉〈b̄′2b̄2b̄′1b̄1b̄′0b̄0|


Exercise B.4 Show that eqn (B.30) is identical to eqn (B.25) if we use the Choi represen-
tation for superoperators, i.e., if we identify U ↔ U and C ↔ C.

To complete our exposition, we turn to another equivalent representation of the
process tensor, which shows that the process tensor can be seen as a state of a suitable
quantum many–body system. Specifically, we convert an n–step process to a state liv-

ing on H⊗(2n+1)
S , which is isomorphic to our previous representations. To motivate the
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Fig. B.2 Left: Circuit diagram of the Choi matrix representation of a superoperator A.

Right: Circuit diagram to construct the Choi matrix of the process tensor according to a

generalized Choi–Jamio lkowski isomorphism. The vertical lines denote a swap between state

spaces marked with a cross.

following, we return to the Choi matrix A corresponding to a superoperator A, which
was constructed by letting A act on one half of an (unnormalized) maximally entan-
gled state, see eqn (B.14). Furthermore, recall that the Choi matrix can be naturally
interpreted as the (unnormalized) state of a bipartite quantum system (Exercise B.3).
This is graphically depicted in Fig. B.2.

Similarly, to turn the process tensor into its corresponding Choi matrix, we let it
interact at each intervention time tj with one half of a maximally entangled state.
This is achieved by swapping at each time the current system state with a fresh
state, which forms one half of a maximally entangled ancilla state Aj . Precisely, let
ψ+
j =

∑ |a′ja′j〉〈b′jb′j | denote the (unnormalized) maximally entangled state of Aj and
let the unitary swap superoperator be

SS,Aj (ρS ⊗ ψ+
j ) = SS,Aj

∑
ρa,b|aa′ja′j〉〈bb′jb′j | ≡

∑
ρa,b|a′jaa′j〉〈b′jbb′j |, (B.31)

which exchanges the system with the first half of the ancilla. Then, the final claim of
this section is

T = trB2
{US2B2,S′1B1

∗ US1B1,S′0B0
∗ ρS0B0

}
∼= trB{U1SSA1

U0SSA0
ρSB(0)⊗ ψ+

0 ⊗ ψ+
1 },

(B.32)

where ∼= means that the result is identical up to reordering of the Hilbert spaces
and if the superoperators are given in Choi representation. Furthermore, we have
restricted ourselves again to the first three control operations, but the generalization
to n interventions is straightforward.

Exercise B.5 Derive eqn (B.32). Furthermore, show that the Choi matrix corresponding to
a quantum Markov process defined in Section 1.8 is isomorphic to E(tn, tn−1)⊗ · · · E(t1, 0)⊗
ρS(0), i.e., a many–body state where correlations only exist between a preparation and its
subsequent measurement or, in view of the terminology of this appendix, between an output
state S′j−1 and an input state Sj .
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Further reading

Pedagogical accounts on how to represent
quantum operations by matrices can be
found at many places. As the name sug-
gests, the Choi–Jamio lkowski isomorphism
is due to the work of Jamio lkowski (1972)
and Choi (1975). The link product was in-

troduced by Chiribella et al. (2009) and the
process tensor representation in terms of a
many–body state was given by Pollock et al.
(2018a); see also Milz and Modi (2021) and
references therein for a detailed exposition.



Appendix C

Time–Reversal Symmetry

We show that the equations of motion of classical and quantum mechanics have a
remarkable property, which we call time–reversal symmetry or microreversibility. Its
consequences for the arrow of time and the second law of thermodynamics are also
discussed at the end.

In both cases, classically and quantum mechanically, the notion of time–reversal
symmetry will be introduced with respect to the following abstract thought experi-
ment, which is also depicted as a diagram in Fig. C.1. It is important to note here
that this thought experiment can be carried out in the real world without the need
to actually ‘reverse’ the time. The reader therefore should not take the terminology
‘time–reversal’ literally (cf. the discussion in Section C.3). As usual in physics, there
are two main players involved. Initial states, here abstractly denoted by S0, and some
dynamical law, here abstractly denoted by E(τ), which maps the initial states to some
final states Sτ = E(τ)S0 after a time τ has elapsed. Now, suppose that we find an
invertible map Θ, which we call the time–reversal operator, and some conjugate dy-
namics EΘ(τ) such that

S0 = Θ−1EΘ(τ)ΘE(τ)S0. (C.1)

In words: we get back to the initial state S0 if we let the system evolve in time for a
duration τ , then time–reverse the state followed by an evolution for a duration τ with
respect to the conjugate dynamics and, finally, apply the inverse of the time–reversal
operator. We now define:

Time–reversal symmetry. A physical system defined by some dynamical law E(τ)
is said to possess time–reversal symmetry if there exists an invertible time–reversal
operator Θ and a conjugate dynamical law EΘ(τ) such that eqn (C.1) holds under the
following three conditions:

Fig. C.1 Abstract diagram of the thought experiment related to the notion of time–reversal

symmetry.
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1. Equation (C.1) holds for all legitimate initial conditions S0.

2. The states Sτ , ΘSτ and ΘS0 are legitimate physical states.

3. The conjugate dynamical law EΘ(τ) is a legitimate physical evolution law, which
can be (in principle) implemented in a lab.

Here, the word ‘legitimate’ has to be defined by the physical context at the end,
e.g., legitimate states or evolution laws should not give rise to negative probabilities.
Furthermore, the conjugate dynamics EΘ(τ) must be realizable in a lab in principle
(e.g., generated by a legitimate Hamiltonian). As we see below, this excludes the choice
Θ = I and EΘ(τ) = E(τ)−1, which would trivially satisfy eqn (C.1).

C.1 Time–Reversal Symmetry in Classical Mechanics

The state of a classical system with N particles and 2f degrees of freedom per particle
is described by its phase space coordinates (q,p) ∈ R2Nf , where q = (q1, . . . , qNf )
are the generalized coordinates and p = (p1, . . . , pNf ) the conjugate momenta. Note
that we here restrict the discussion to ‘pure’ states, which are represented by a single
point in phase space. Since mixtures evolve via Liouville’s equation linearly in classical
mechanics, this assumption does not entail any loss of generality. In addition, to focus
on the essential ingredients of time–reversal symmetry, we set N = 1 and f = 1 in the
following (i.e., a single particle moving in one dimension). The generalization to many
particles and multiple degrees of freedom is indeed just a matter of notation. Thus, we
denote the Hamiltonian of the system by H(q, p) and Hamilton’s equations of motion
become

q̇ =
∂H(q, p)

∂p
, ṗ = −∂H(q, p)

∂q
. (C.2)

To be particularly cautious and in view of what follows, we write Hamilton’s equations
in difference form as

qt+dt = qt + dt
∂H

∂p

∣∣∣∣
(qt,pt)

, pt+dt = pt − dt
∂H

∂q

∣∣∣∣
(qt,pt)

, (C.3)

assuming dt to be small enough such that terms of order O(dt2) are negligible through-
out. Note that we explicitly keep the information at which phase space point the partial
derivative is evaluated, which turns out to be crucial.

We now define define the time–reversal operator Θ via its action on a phase space
point (q, p) as

Θ(q, p) ≡ (q,−p), (C.4)

i.e., we leave the coordinate unchanged, but flip the momentum. We see that this
definition implies that Θ is an involution: Θ2 = I. Put differently, the time–reversal
operator is its own inverse: Θ = Θ−1. This will be true for the rest of this section, but
it is no longer the case for quantum systems in general. Fig. C.2 explains the concept
of time–reversal for the case of a simple harmonic oscillator.

Furthermore, we start with the simplest situation and assume a Hamiltonian, which
obeys the symmetry H(q,−p) = H(q, p). This is often satisfied, e.g., when the Hamil-
tonian H(q, p) = p2/2m + V (q) describes the motion of a particle in some external
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Fig. C.2 Time–reversal symmetry illustrated in the phase space of a harmonic oscillator.

The grey circle defines a ‘surface’ of constant energy. Time–reversal symmetry of the dy-

namics means that one can go back from (qτ , pτ ) to (q0, p0) by, first, mapping (qτ , pτ ) to its

time–reversed image (q̃0, p̃0) = (qτ ,−pτ ), then, letting the system evolve for a time τ , and

finally, mapping (q̃τ , p̃τ ) back to (q0, p0) = (q̃τ ,−p̃τ ).

potential V (q), but we treat exceptions soon. We then postulate the conjugate dynam-
ics to be also described by Hamilton’s equations with respect to the same Hamiltonian

HΘ(q, p) ≡ H(q, p). (C.5)

We now check the validity of the diagram C.1 for a small time step dt from t = 0 to
dt. We introduce the notation

(q̃0, p̃0) ≡ Θ(qdt, pdt) = (qdt,−pdt). (C.6)

This choice might seem unconventional, but it has the advantage that the time parame-
ter also increases in the time–reversed experiment as it would in any actual experiment.
Our goal is now to show that the time–reversed state, evolved for a small time step dt
with respect to the Hamiltonian (C.5), obeys (q̃dt, p̃dt) = Θ(q0, p0) = (q0,−p0). To see
this, we start by writing down Hamilton’s equation for the time–reversed evolution
with HΘ = H

q̃dt = q̃0 + dt
∂H

∂p

∣∣∣∣
(q̃0,p̃0)

, p̃dt = p̃0 − dt
∂H

∂q

∣∣∣∣
(q̃0,p̃0)

. (C.7)

Next, we use definition (C.6) and the fact that any differentiable function obeying
f(x) = f(−x) satisfies f ′(−x) = −f ′(x). Applied to H(q, p) = H(q,−p), this implies

q̃dt = qdt − dt
∂H

∂p

∣∣∣∣
(qdt,pdt)

, p̃dt = −pdt − dt
∂H

∂q

∣∣∣∣
(qdt,pdt)

. (C.8)

Using furthermore our assumption that terms of order O(dt2) are negligible allows
us to evaluate the partial derivatives at (q0, p0) instead of (qdt, pdt). Multiplying the
second equation with −1, we end up with

q̃dt = qdt − dt
∂H

∂p

∣∣∣∣
(q0,p0)

, − p̃dt = pdt +
∂H

∂q

∣∣∣∣
(q0,p0)

. (C.9)
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Fig. C.3 Commutative diagram describing time–reversal symmetry for a finite interval

[0, τ ].

But this is equation is identical—after some rearrangement—to eqn (C.3) at t = 0 if
we identify (q̃dt, p̃dt) = (q0,−p0). To conclude, we have shown that we end up at the
initial phase space coordinate (q0, p0) if we start a time step dt later with (qdt, pdt),
apply the time–reversal operator Θ, let the time–reversed state evolve forward in time
for a step dt with respect to the Hamiltonian (C.5), and finally apply Θ again.

Is the above argument sufficient to conclude that time–reversal symmetry applies
also to a finite interval from 0 to τ? It is if we recall that we can always discretize any
trajectory (qt, pt), t ∈ [0, τ ], with a sufficiently small time step dt and if we use the
fact that the time reversal operator obeys Θ2 = I. This means that each step shown
in the diagram of Fig. C.3, where we used the notation

(q̃t, p̃t) ≡ Θ(qτ−t, pτ−t) = (qτ−t,−pτ−t), (C.10)

obeys the mapping described above. Thus, the process obeys time–reversal symmetry.
It is interesting to wonder whether the time–reversal symmetry relation worked

out above is unique or whether other choices for Θ and HΘ are possible as well. As
the next exercise shows, other choices are indeed possible.

Exercise C.1 Assume that the Hamiltonian obeys the symmetry H(q, p) = H(−q, p), which
is, for instance, the case for a harmonic oscillator. Now, consider the time–reversal operator
Θ′(q, p) ≡ (−q, p), which flips the coordinate, but not the momentum, and define the reversed
dynamics via HΘ′(q, p) ≡ H(q, p). By following the same steps as above, show that these
transformations also lead to the notion of time–reversal symmetry. Flipping the coordinates
and not the momenta might seem awkward at first sight. However, recall the flexibility that
is offered by Hamilton’s framework of classical mechanics. In particular, remember that any
canonical transformation preserves the form of Hamilton’s equations and describes the same
physics in a different coordinate system. Convince yourself of the fact that the mapping
(Q,P ) ≡ (p,−q) is a canonical transformation.

We have so far considered time–independent Hamiltonians obeying the symme-
try H(q, p) = H(q,−p). Two generalizations are important. First, it might be that
H(q, p) 6= H(q,−p). A prominent example is a particle with charge q in an external
electromagnetic field described by an electric potential φ and a vector potential A,
which creates a magnetic field via B = ∇ × A. Such a system is described by the
Hamiltonian

H(q,p;B) =
1

2m

(
p− q

c
A
)2

+ qφ(q), (C.11)
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where p ∈ R3 (q ∈ R3) describes the three–dimensional momentum (position) and c
is the speed of light. Clearly, H(q,−p;B) 6= H(q,p;B). However, if we recall that
any magnetic field is created by moving charges and if we would include those in our
description as well, then the time–reversal operator Θ would flip the velocity of those
charges and hence, the direction of the magnetic field. Therefore, eqn (C.11) obeys the
symmetry H(q,−p;−B) = H(q,p;B). To describe time–reversal symmetry for the
situation where we treat the magnetic field as an external parameter, we can keep the
definition of Θ from eqn (C.4) and define the conjugate dynamics by applying Θ to
the Hamiltonian (C.11):

HΘ(q, p;B) ≡ H(q,−p;B) = H(q, p;−B). (C.12)

Here, we returned to a scalar notation (i.e., q → q, etc.) for simplicity. Due to the
symmetry H(q, p;B) = H(q,−p;−B), the conjugate dynamics are therefore generated
by a Hamiltonian, which describes the same system but with an inverted magnetic field.
Also due to that symmetry, we can confirm that

∂HΘ(q, p;B)

∂p

∣∣∣∣
(qt,−pt)

= − ∂H(q, p;B)

∂p

∣∣∣∣
(qt,pt)

. (C.13)

This relation is sufficient to repeat the same steps as above and to show the time–
reversal symmetry of the dynamics.

The second generalization concerns explicitly time–dependent Hamiltonians of the
form H(q, p;B, λt), where λt is some externally specified driving protocol. To include
this scenario in our description, remember that our calculation above holds for any
Hamiltonian at a fixed time t. In particular, we could replace H(q, p) by H(q, p;λt)
in eqns (C.5) to (C.9) without invalidating any argument. For a finite time interval
[0, τ ] and with respect to the diagram in Fig. C.3 this means that the time argument
of the Hamiltonian H(q, p;B, λt) in the forward process must match with the time
argument of the Hamiltonian HΘ(q, p;B, λt) in the backward process. Together with
the convention (C.10) that the time–reversed trajectory starts at t = 0 and ends at
t = τ this implies that the time–reversed Hamiltonian is given by

HΘ(q, p;B, λt) ≡ H(q, p;−B, λτ−t), (C.14)

i.e., the protocol is executed in the reverse order, starting with λτ and ending with λ0.
We end this section with a remark and a small exercise. The remark concerns the

observations that the notion of time–reversal symmetry is closely linked to Liouville’s
theorem, which states that the flow of points in phase space generated by Hamilton’s
equations is divergence–free and preserves the volume. Since this fact is used in the
main text, we state it here without proof (which can be looked up in any standard
textbook on classical mechanics):

Liouville’s theorem. Consider a classical Hamiltonian system of N particles with
2f degrees of freedom per particle. Let Γ = (q,p) ∈ R2Nf denote a point in the phase
space. Furthermore, let Γt = φt(Γ0) denote the time evolved point in phase space given
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initial condition Γ0. Then, the Jacobian of this transformation equals one, i.e., using
a compact notation

J = det

(
∂Γt

∂Γ0

)
= 1. (C.15)

In particular, this implies for any function f(Γ)∫
dΓ0f [Γt(Γ0)] =

∫
dΓtf(Γt). (C.16)

Roughly speaking, Liouville’s theorem states that no information is lost during
the evolution of a Hamiltonian system. This idea is closely related to time–reversal
symmetry since the latter principle states that we can find for each ‘forward’ trajectory
a conjugated ‘reversed’ trajectory, which also obeys Hamiltonian dynamics. The fact
that conservation of information plays a crucial role here is exemplified by the following
exercise.

Exercise C.2 Consider a master equation dtp(t) = Rp(t) described by a time–independent
rate matrix R. The solution of the dynamics is given by the transition matrix eRt. Thus,
the dynamics are clearly invertible as we can associate to each final state p(t) a unique
initial state p(0) via p(0) = e−Rtp(t). Now, it is tempting to conclude that the dynamics of a
master equation obeys time–reversal symmetry by setting Θ = I and by postulating the time–
reversed dynamics to obey the ‘master equation’ dtp(t) = −Rp(t). While the above steps are
mathematically correct, show that the above construction does not satisfy the requirements
of time–reversal symmetry. What is wrong with the time–reversed master equation? What is
the difference between Hamiltonian dynamics and master equation dynamics (compare, e.g.,
the physical insight obtained from Liouville’s theorem with respect to Theorem A.4)?

C.2 Time–Reversal Symmetry in Quantum Mechanics

We introduce time–reversal symmetry in quantum mechanics by postulating that there
exists a time–reversal operator Θ such that |ψ(0)〉 = Θ−1UΘ(τ, 0)ΘU(τ, 0)|ψ(0)〉 holds
for any initial state |ψ(0)〉. Here, U(τ, 0) is the unitary time evolution for the forward
dynamics and UΘ(τ, 0) is the unitary time evolution of a suitably defined conjugate
or backwards dynamics. In words, the relation |ψ(0)〉 = Θ−1UΘ(τ, 0)ΘU(τ, 0)|ψ(0)〉
says that, if we let an arbitary state evolve for a time τ , time–reverse it, let it evolve
for a time τ using the conjugate dynamics, and apply the inverse time–reversal, then
we end up with the same state. Since this relation is supposed to hold for any initial
state, we can also write it as an operator identity:

Θ−1UΘ(τ, 0)ΘU(τ, 0) = I. (C.17)

How to define Θ and UΘ remains, of course, the open question.
To approach it, we consider the simplest situation first and rely on some classi-

cal intuition. Consider a single particle with mass m moving in a potential V with
Hamiltonian H = P 2/2m + V (X), where X and P are the position and momentum
operators. For this case we found classically that the time–reversal operator is an in-
volution, Θ−1 = Θ, and we have good reasons to believe that the conjugate dynamics
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is identical to the forward dynamics, i.e., UΘ(τ) = U(τ) = e−iHτ/~. We use this as
our hypothesis now and investigate its consequences. Expanding eqn (C.17) for small
τ , we arrive at

I + Θ(−iHτΘ−ΘiHτ) +O(τ2) = I, (C.18)

where we used Θ2 = I. From this equation we obtain the condition −iHτΘ = ΘiHτ .
Now, if Θ was a linear operator, the last condition reduces to −HΘ = ΘH, i.e., the
time–reversal operator anti–commutes with the Hamiltonian. This conclusion, how-
ever, causes troubles because one immediately confirms that for any eigenstate |E〉
of the Hamiltonian with eigenenergy E > 0 there exist another eigenstate Θ|E〉 with
negative eigenenergy −E. This is problematic because we expect the spectrum of ev-
ery reasonable physical Hamiltonian to be bounded from below (otherwise it would be
thermodynamically unstable and we could draw an infinite amount of energy from
it). Thus, our assumption that Θ is a linear operator must have been wrong. There-
fore, we consider the alternative possibility that Θ is anti–linear, by which we mean
that Θi = −iΘ. With this assumption the condition −iHτΘ = ΘiHτ reduces to
HΘ = ΘH, i.e., the time–reversal operator commutes with the Hamiltonian. This,
indeed, does not give rise to any paradoxical situations for the spectrum of the Hamil-
tonian.

Anti–linear operators are somewhat bizarre objects, they cannot be represented by
a matrix and typically one does not encounter them in quantum mechanics. To get
familiar with them, we consider a simple example, namely the complex conjugation
operator denoted by K. It is clear that K2 = I, but K is not yet well–defined if we do
not specify in which basis it causes complex conjugation. Within the context of time–
reversal symmetry and for the example considered above of a particle in a potential
V , the most reasonable choice turns out to be complex conjugation with respect to the
coordinate representation of the wavefunction. Thus, we set Θ = K and, by expanding
any state in the coordinate representation, |ψ〉 =

∫
dx〈x|ψ〉|x〉 =

∫
dxψ(x)|x〉, we

define K as K|ψ〉 =
∫
dxψ(x)∗|x〉. The motivation for this choice comes from the fact

that the position and momentum operators X and P then transform as expected from
the classical case (C.4):

ΘXΘ = X, ΘPΘ = −P. (C.19)

In this context, X is said to be an even observable and P an odd observable. Proving
ΘXΘ = X is simple. To prove ΘPΘ = −P , consider a momentum eigenstate ψk(x) =
eikx/~ with eigenvalue k in the coordinate representation (this is a plane wave). We
then obtain the chain of equalities

ΘPΘψk(x) = ΘPe−ikx/~ = Θ(−k)e−ikx/~ = −kψk(x) = −pψk(x), (C.20)

where we used that the momentum operator has the coordinate representation P =
−i~ ∂

∂x . Since the ψk(x) form an (over)complete set of basis vectors, we can conclude
from eqn (C.20) that ΘPΘ = −P . Furthermore, we see that a Hamiltonian of the form
H = P 2/2m+ V (X) obeys ΘHΘ = H and hence, it is invariant under time–reversal.
This also allows us to easily prove eqn (C.17) for UΘ(τ) = U(τ) and Θ−1 = Θ:

Θe−iHτ/~Θe−iHτ/~ = Θ2eiHτ/~e−iHτ/~ = I. (C.21)
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Unfortunately, the time–reversal operator Θ is not always given by complex con-
jugation in the position representation. It has, however, a couple of general features.
The first is related to anti–linearity and is called anti–unitarity. It is defined by the
requirement that for any two states |ψ〉 and |φ〉

〈Θψ|Θφ〉 = 〈ψ|φ〉∗ = 〈φ|ψ〉. (C.22)

This property ensures that |〈Θψ|Θφ〉| = |〈ψ|φ〉|, i.e., all probabilities are left un-
changed. To get further acquainted with the ‘bizarreness’ of anti–unitarity, the reader
is asked to do the following three small exercises.

Exercise C.3 Show that anti–unitarity implies anti–linearity.

Exercise C.4 Show for any operator O that tr{ΘOΘ−1} = tr{O}∗ = tr{O†}. Hint: You
can use that, if Θ is anti–unitary, then also Θ−1 is.

Exercise C.5 Show for any observable O that the time–reversed observable ΘOΘ−1 is also
an observable, i.e., it is Hermitian. Hint: Show this directly by confirming 〈ψ|ΘOΘ−1φ〉 =
〈ΘOΘ−1ψ|φ〉 for any |ψ〉 and |φ〉. We remark that it is unclear how and never necessary to
define the Hermitian conjugate of the anti–unitary operator Θ.

Furthermore, show for any observable O that ΘOΘ−1 has the same spectrum as O, i.e.,
the same eigenvalues, but not necessarily the same eigenvectors.

It is clear from definition (C.22) that the product of two anti–unitary operators is
unitary. This insight makes the following result intuitively appealing. Namely, every
anti–unitary operator can be written in the standard form

Θ = UK, (C.23)

where K denotes as above complex conjugation in some fixed basis and U is a unitary
operator. We will, however, not prove eqn (C.23) here. Furthermore, we demand that
applying Θ twice to a wave function should give back the same wave function apart
from a phase factor: Θ2|ψ〉 = eiϕ|ψ〉. This requirement leads to an interesting conclu-
sion. First, from Θ2 = UKUK = eiϕ one derives U∗ = KUK = eiϕU† = eiϕ(U∗)T .
Iterating the last relation once, we obtain U∗ = eiϕ[eiϕ(U∗)T ]T = e2iϕU∗. Hence,
e2iϕ = 1, which implies eiϕ = ±1. Thus, we arrive at the conclusion

Θ2 = ±I. (C.24)

The case Θ2 = I appeared already above, but as we will see now the case Θ2 = −I
becomes important to describe time–reversal of a spin 1/2 particle.

From eqn (C.19) we infer that angular momentum J = X×P of a particle moving
in three dimensions is odd under time–reversal: ΘJΘ = −J. By analogy, we postulate
the same for the spin: ΘσΘ = −σ, where σ = (σx, σy, σz) is the vector of Pauli
matrices. If Θ = K, this is not possible independent of the basis, which we choose for
K. We therefore set Θ = UK and assume that K denotes complex conjugation in the
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coordinate representation and in the σz representation, where the Pauli matrices take
on the standard form:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (C.25)

In this representation the condition ΘσΘ = −σ yields three equations:

ΘσxΘ−1 = UσxU
−1 = −σx ⇔ {U, σx} = 0, (C.26)

ΘσyΘ−1 = −UσyU−1 = −σy ⇔ [U, σy] = 0, (C.27)

ΘσzΘ
−1 = UσzU

−1 = −σz ⇔ {U, σz} = 0. (C.28)

Now, every complex 2 × 2 matrix can be written as U = ασx + βσy + γσz + δI with
α, β, γ, δ ∈ C. Inserting this ansatz in the above three equations and evaluating the
(anti–)commutators reveals that α = δ = 0 (from the first equation) and γ = 0 (from
the second equation). The third equation is then automatically satisfied and we are
left with U = βσy. The parameter β can be chosen freely as long as U is unitary,
which implies |β| = 1. The conventional choice is β = i such that

Θ = iσyK = eiπσy/2K. (C.29)

One easily confirms that Θ2 = −I. Moreover, for a system with N spin 1/2 particles

the time–reversal operator becomes Θ = exp[iπ(σ
(1)
y + · · · + σ

(N)
y )/2]K and we have

Θ2 = I if N is even and Θ2 = −I if N is odd.
It is instructive to consider the distinction between systems with Θ2 = I and

Θ2 = −I a little more in detail. We start with Θ2 = I and assume that [Θ, H] = 0.
As the next exercise shows, it is then possible to always write the Hamiltonian as a
real–valued matrix without explicit knowledge of the energy eigenbasis.

Exercise C.6 Show that any Hamiltonian, which obeys [Θ, H] = 0 for an anti–unitary
operator Θ with Θ2 = I, can be given a real matrix representation without knowing the
eigenbasis (remember that, in general, a Hamiltonian matrix has complex entries although
its eigenvalues are always real since H = H†). For this purpose start with an arbitrary
vector |φ1〉 and complex number a1 and set |ψ1〉 = a1|φ1〉 + Θa1|φ1〉, which is clearly Θ–
invariant: Θ|ψ1〉 = |ψ1〉. Next, take a second vector |φ2〉 orthogonal to |ψ1〉 and set |ψ2〉 =
a2|φ2〉+Θa2|φ2〉. Show that 〈ψ2|ψ1〉 = 0. Continued application of this recipe results in a set of
basis vectors {|ψn〉}, which obey 〈ψm|ψn〉 = δm,n for an appropriate choice of the an. Finally,
show that the Hamiltonian is real in that basis by proving that Hmn = 〈ψm|H|ψn〉 = H∗mn.
Hamiltonians which can be given such a real–valued matrix representation are said to possess
time–reversal invariance or time–reversal symmetry. This notion should not be confused with
our notion of time–reversal symmetry: Also a Hamiltonian, which does not obey [Θ, H] = 0
for an anti–unitary operator Θ with Θ2 = I, gives rise to a time–reversal symmetry of the
dynamics as defined at the beginning of this appendix.

As a consequence of the previous exercise, we can choose without loss of generality
|E〉 = Θ|E〉 for any energy eigenstate |E〉 if [Θ, H] = 0 and Θ2 = I. In contrast, let
us now consider the second option: [Θ, H] = 0 with Θ2 = −I. We then confirm

〈E|ΘE〉 =
〈
ΘE|Θ2E

〉∗
= −〈ΘE|E〉∗ = −〈E|ΘE〉. (C.30)
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Hence, 〈E|ΘE〉 = 0, which implies that |E〉 and Θ|E〉 are two orthogonal states with
the same energy eigenvalue. Thus, all eigenvalues of a Hamiltonian obeying [Θ, H] = 0
with Θ2 = −I are doubly degenerate. This result is known as Kramer’s degeneracy.

After this excursion how to define the time–reversal operator Θ for quantum sys-
tems, let us return to the dynamical picture. Consider a Hamiltonian H(λt) with
some driving protocol λt, t ∈ [0, τ ]. The time evolution operator for the forward time
evolution can be approximated as

U(τ, 0) ≈ e−iH(λN−1)δt/~ . . . e−iH(λ0)δt/~, (C.31)

where we divided the time interval into steps of size δt = τ/N and implicitly keep
in mind the limit N → ∞ in which eqn (C.31) becomes exact. From our basic equa-
tion (C.17) we can then infer that the conjugate dynamics are described by the time
evolution operator

UΘ(τ, 0) = ΘU†(τ, 0)Θ−1

= ΘeiH(λ0)δt/~ . . . eiH(λN−1)δt/~Θ−1

= e−iHΘ(λ0)δt/~ . . . e−iHΘ(λN−1)δt/~.

(C.32)

In the last equation, we defined HΘ(λt) ≡ ΘH(λt)Θ
−1. Thus, as expected from the

classical case, the conjugate dynamics are defined by changing the protocol backwards
in time from λτ to λ0 with respect to the time–reversed Hamiltonian. Again in uni-
son with the classical case, the time–reversed Hamiltonian describing a particle in
an external magnetic field B can be obtained by simply flipping the magnetic field:
ΘH(B, λt)Θ

−1 = H(−B, λt). Note, however, that it is not true that ΘBΘ−1 = −B.
Treated as an external field, B is simply a real–valued parameter, which remains un-
affected by the time–reversal operator Θ.

Finally, in the last exercise we prove and generalize a statement, which we used in
Section 2.3 to derive the important relation of local detailed balance.

Exercise C.7 Consider first two observables X =
∑
x xΠ(x) and Y =

∑
y yΠ(y) and their

time–reversal ΘXΘ−1 =
∑
x xΠΘ(x) and ΘYΘ−1 =

∑
y yΠΘ(y). Show the validity of the

following identity:

tr{Π(y)U(t, 0)Π(x)U†(t, 0)} = tr{ΠΘ(x)UΘ(t, 0)ΠΘ(y)U†Θ(t, 0)}. (C.33)

Now, recall that the rate to jump from a coarse–grained state x′ to x under the assumption
of time scale separation was computed in eqn (2.41) and, writing Π(E, x) = ΠE,x, reads:

Rx,x′ =
1

δt

1

VE,x′
tr{Π(E, x)U(δt)Π(E, x′)U†(δt)}. (C.34)

We now consider the time–reversed process. The rate to jump from a time–reversed coarse–
grained state xΘ to x′Θ under the assumption of time scale separation becomes

RΘ
x′Θ,xΘ

=
1

δt

1

VE,x
tr{ΠΘ(E, x′)UΘ(δt)ΠΘ(E, x)U†Θ(δt)}. (C.35)
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Note that the number of microstates remains unchanged by the time–reversal operator:
VE,xΘ = tr{ΘΠE,xΘ−1} = tr{ΠE,x}∗ = VE,x. From eqn (C.33) it follows directly that

Rx,x′

RΘ
x′Θ,xΘ

=
VE,x
VE,x′

= exp

[
SB(E, x)− SB(E, x′)

kB

]
, (C.36)

which is the local detailed balance relation in full generality. The conventionally considered
case from Section 2.3 assumes that the observable is even, X = ΘXΘ−1, and the Hamiltonian
has time–reversal invariance, H = ΘHΘ−1. Under these circumstances RΘ

x′Θ,xΘ
= Rx′,x and

eqn (C.36) reduces to the conventional local detailed balance condition (2.43).

C.3 The Arrow of Time

After the mathematical treatment of time–reversal symmetry, we discuss some physical
and philosophical implications. In fact, the world around us does not seem to obey
time–reversal symmetry: ageing, the ability to remember the past but not the future,
and the fact that the rich get richer and the poor poorer are three simple examples,
which demonstrate our inability to reverse the arrow of time in our everyday life.
Evolution, the second law of thermodynamics and the expansion of the universe are
three further examples, which seem to show a clear arrow of time. But how can such
an arrow of time emerge, when the underlying equations of motion obey time–reversal
symmetry?

This apparent paradox was articulated by Loschmidt and Zermelo, who critically
questioned Boltzmann’s attempt in 1872 to derive the second law of thermodynamics
on a purely mechanical and microscopic basis. Loschmidt in 1876 pointed out that a
purely mechanical derivation to reach (and maintain) a stationary (i.e., equilibrium)
state from some arbitrary initial state contradicts time–reversal symmetry. This argu-
ment is known as Loschmidt’s Umkehreinwand, i.e., Loschmidt’s objection based on
(time–)reversal. In addition, Zermelo in 1896 pointed out that Poincaré’s recurrence
theorem forbids the derivation of a stationary state from an initial non–stationary state
as the state of an isolated mechanical system must eventually return (very close) to its
initial state. This argument is known as Zermelo’s Wiederkehreinwand, i.e., Zermelo’s
objection based on recurrences.

However, both, Loschmidt and Zermelo, seemed to be unaware of the fact how
unlikely these arguments are for macroscopic systems. The vast majority of states
of a macroscopic isolated mechanical system with a fixed energy closely resemble a
maximum entropy state and the Poincaré recurrence time becomes immeasurably large
(compare also with Section 1.3). Boltzmann instead seemed to be fully aware of these
arguments and emphasized the statistical character of the second law (as also Maxwell
did) in his replies.

Nevertheless, even more than hundred years after these objections, controversies
about the origin of the arrow of time are still not fully settled. As the major pur-
pose of this book is to clarify the foundations of quantum and classical stochastic
thermodynamics, which necessarily includes also various arguments used to ‘derive’
the second law of thermodynamics, it seems worthwhile to point out a few interesting
observations—without any intention to provide a complete resolution.
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A first question one could wonder about is whether the mathematical construct
of time–reversal symmetry actually describes well the philosophical or human idea we
associate with it. In fact, often time–reversal symmetry is epitomized by the transfor-
mation ‘t 7→ −t,’ but as we saw above this very simple mapping does not correctly
describe time–reversal symmetry, which is a much more complicated construction in
general. Perhaps due to this reason some people prefer to speak about ‘microreversibil-
ity’ instead of ‘time–reversal symmetry’ and Wigner himself noted that it would be
more appropriate to speak about “reversal of the direction of motion.” Putting this
question aside, let us proceed by assuming that the mathematical construct above
correctly describes time–reversal symmetry.

Next, one could wonder whether the second law of (phenomenological) thermo-
dynamics can be actually used to prove the arrow of time. In fact, the second law
of thermodynamics is probably the outstanding physical law, which does not possess
time–reversal symmetry. However, remember that the laws of phenomenological ther-
modynamics are postulates or axioms in accordance with human experience (in the
same way as Newton’s or Schrödinger’s equation are axioms in classical or quantum
mechanics). Thus, saying that the second law proves the arrow of time is a tautology
in so far as it simply shifts the problem from proving the arrow of time to proving the
increase in entropy. At least, however, it gives us evidence that the arrow of time is
linked to another physical concept, namely entropy. Thus, let us accept the idea that
the second law of thermodynamics relates to the arrow of time.

But now, when we try to derive the second law from an underlying microscopic
theory, we are back to Boltzmann’s problem. Undeniably, our knowledge how to ‘derive’
the second law of thermodynamics has improved since Boltzmann and many ways to
do so are presented in this book. However, all the ways the author is aware of share
one common feature: The increase in entropy is only proven with respect to some
special initial state. Thus, whereas we might be nowadays able to prove the second
law under increasingly mild assumptions, we were not yet able to prove the arrow of
time since all our derivations rely on a particularly chosen boundary condition. To put
it differently: We could replace in this book the original Hamiltonian with its time–
reversed counterpart, yet we were still able to prove the second law in the same way
as before. The second laws in this book do not explain the arrow of time.

This insight strongly suggest that the second law is not a consequence of the mi-
crosopic equations of motion, as already clearly stated by Boltzmann: “The Second
Law can never be proved mathematically by means of the equations of dynamics
alone.” But of what is the second law then a consequence? One of Boltzmann’s ideas,
which he attributes to his assistant Schuetz, was the following. First, they assumed
that the entire universe is in global equilibrium. Then, since they knew about the
statistical character of thermodynamics, they concluded that there must be local fluc-
tuations in the entropy of the universe. If the universe is sufficiently large, the chances
for the existence of a very low entropy region somewhere in the universe could be
sufficiently high. The fact that we experience a second law, and the fact that we even
exist, is then a consequence of living in such a rare entropy fluctuation. This scenario
is illustrated in part (a) of Fig. C.4.

This idea has been met with scepticism. One point of criticism is that a small
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Fig. C.4 Three scenarios explaining the arrow of time in the cosmological universe. (a) An

eternal and infinite universe showing a large spatiotemporal downward fluctuation in entropy

away from its maximum value Smax. (b) The big bang initialized the universe in a low entropy

state of approximately S0 = 1088kB (‘past hypothesis’). Shortly afterwards, the universe

becomes transparent and the image of the cosmic microwave background (NASA/WMAP

Science Team) shows radiation in almost perfect equilibrium (puzzle: why is this state not

already close to maximum entropy in this scenario?). The entropy value 10123kB is computed

by collapsing all matter and energy of the universe into a black hole. However, since black

holes evaporate, this is not the end of the story. (c) Cosmological model that is time–reversal

symmetric on large scales with a low entropy (or complexity) value at the centre (the ‘big

bang’) and arrows of time emerging from there in both directions.

local entropy fluctuation, which only creates a single observer, whose brain gives the
impression that we live in the current universe, is much more likely than a large local
entropy fluctuations, which creates a low entropy observer together with a low entropy
earth together with a low entropy solar system together with a low entropy galaxy, etc.
The creation of such a single conscious observer by spontaneous thermal fluctuations
is known as the Boltzmann brain problem.

Therfore, most researchers believe today that it is much more likely that the second
law is a consequence of the initial state of the universe right after the Big Bang (the
concept of the Big Bang was not known to Boltzmann and his contemporaries). In
fact, if the thermodynamic entropy of the initial state of the universe was sufficiently
low, an increase of thermodynamic entropy could be observed for a very long time,
thus effectively explaining the second law of thermodynamics. This is also known as
the past hypothesis. This scenario is illustrated in part (b) of Fig. C.4.

Notice that, even if the past hypothesis was true, it does not seem to explain why
the concept of time (independent of any arrow) exists at all. Perhaps it turns out
that the Hamiltonian of the universe is not time–reversal invariant. In fact, violations
of time–reversal invariance were observed in systems described by electroweak inter-
actions. Electroweak interactions could therefore explain the fundamental asymmetry
between time and space. Furthermore, although the past hypothesis explains the ther-
modynamic arrow of time, it is not clear whether it also explains, e.g., the biological
arrow of time: Is evolution, ageing, or the ability to remember the past but not the
future a consequence of the second law?

We conclude by mentioning a third alternative to explain the emergence of an
arrow of time on a cosmological scale, where a time–reversal symmetric universe has
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two branches, each locally defining its own arrow of time. This is illustrated in part (c)
of Fig. C.4. In fact, it has been argued that this situation could be generic. Also doubts
has been expressed about the applicability of the entropy concept to the universe as
a whole because the general definition of gravitational entropy (except for the case of
a black hole) remains unclear. Perhaps another concept (loosely called ‘complexity’ in
Fig. C.4) is required to explain the arrow of time in the universe?

Further reading

Much of our knowledge about time–reversal
symmetry, and symmetries in general in
quantum mechanics, goes back to Wigner
(1959). Finding pedagogically useful ac-
counts of time–reversal symmetry in stan-
dard textbooks on quantum mechanics is,
however, not so easy, but see, for instance,
the book of Sakurai (1994) for an exception.
The question whether a Hamiltonian is in-
variant under time–reversal is also very im-
portant in the field of quantum chaos and
part of my exposition was inspired by the
book of Haake (2010).

The phrase ‘arrow of time’ was popu-
larized in a book by Eddington (1928). An-
other historically important review about
statistical mechanics, including many cita-
tions to the original references from Boltz-
mann, Loschmidt, Zermelo, and others,
can be found in the treatise of Ehren-
fest and Ehrenfest (1911), which was trans-
lated into English by Moravcsik (Ehrenfest
and Ehrenfest, 1959). I also directly quoted
from Boltzmann (1895). Another modern
and less technical account of many of the
ideas I discussed above is given by Lebowitz
(1993). I should also mention here the nu-
merous research efforts showing why and
how isolated quantum systems can effec-

tively equilibrate, even if they are initial-
ized out of equilibrium in a pure quantum
state (Gemmer et al., 2004; D’Alessio et al.,
2016; Borgonovi et al., 2016; Gogolin and
Eisert, 2016; Goold et al., 2016; Deutsch,
2018; Mori et al., 2018). To the best of my
knowledge, however, also this complemen-
tary line of research cannot establish an
asymmetry in time: Isolated quantum sys-
tems initialized out of equilibrium seem to
equilibrate in both directions of time. Cos-
mological considerations about entropy and
the arrow of time can be found at vari-
ous places. The name ‘past hypothesis’ was
coined by Albert (2000). The entropy esti-
mates in part (b) of Fig. C.4 are due to Pen-
rose (1989). A time–symmetric universe ex-
plaining an entropic arrow of time was sug-
gested by Carroll and Chen (2004). Critic-
sim about the use of the entropy concept in
cosmology can be found, e.g., in the article
by Earman (2006). A generic explanation of
a time–symmetric scenario with an arrow of
time in terms of a complexity measure was
found by Barbour et al. (2014). For further
research on the question how the concept of
time can emerge at all see Vaccaro (2016)
and references therein.
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Pollock, F. A., Rodŕıguez-Rosario, C., Frauenheim, T., Paternostro, M., and Modi,
K. (2018b). Operational Markov condition for quantum processes. Phys. Rev.
Lett., 120, 040405.

Pottier, N. (2010). Nonequilibrium Statistical Physics - Linear Irreversible Processes.
Oxford University Press, New York.

Purkayastha, A., Dhar, A., and Kulkarni, M. (2016). Out-of-equilibrium open quan-
tum systems: A comparison of approximate quantum master equation approaches
with exact results. Phys. Rev. A, 93, 062114.

Pusz, W. and Woronowicz, S. L. (1978). Passive states and kms states for general
quantum systems. Comm. Math. Phys., 58(3), 273–290.

Reeb, D. and Wolf, M. M. (2015). Tight bound on relative entropy by entropy
difference. IEEE Trans. Inf. Theory , 61, 1458.

Reimann, P. (2008). Foundation of statistical mechanics under experimentally real-
istic conditions. Phys. Rev. Lett., 101, 190403.

Rempe, G., Schmidt-Kaler, F., and Walther, H. (1990). Observation of sub-Poissonian



312 References

photon statistics in a micromaser. Phys. Rev. Lett., 64, 2783–2786.
Ribezzi-Crivellari, M. and Ritort, F. (2019). Large work extraction and the Landauer
limit in a continuous Maxwell demon. Nat. Phys., 15, 660 – 664.
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Šafránek, D., Deutsch, J. M., and Aguirre, A. (2019a). Quantum coarse-grained
entropy and thermalization in closed systems. Phys. Rev. A, 99, 012103.
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